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ABSTRACT 
 

The phase field method has attracted the attention of academia in recent a 
decade due to the advantage of being able to handle topologically complex fractures 
such as branching cracks and initiation. However, in order to ensure the accuracy of the 
simulation, mesh refinement at the vicinity of the crack tip is necessary. Various adaptive 
mesh refinement strategies for the phase field method have been proposed, but those 
are not easy to use due to the cumbersome of modeling. In this study, we present an 
adaptive mesh refinement strategy for the phase field method to simulate brittle fracture 
problems. The h-refined mesh is used around the crack tip and the coarse mesh is used 
away from the crack tip. The fine mesh and the coarse mesh are connected in a simple 
way using variable-node finite element. The fine mesh where the crack tip passed is 
changed into the coarse mesh for computational efficiency. The performance of the 
strategy is shown through two-dimensional crack numerical examples. In the future, we 
will extend this study by applying numerical techniques such as the strain smoothing 
method and the enriched finite element. Also, it is valuable to extend this study to shell 
fracture. 
 
1. INTRODUCTION 
 

Fracture is a very important phenomenon in that it can cause catastrophic 
accidents in humanity. In order to prevent these accidents, understanding the fracture 
behavior is essential. Several theories have been proposed to understand the fracture 
behavior from the engineering point of view (Inglis 1913, Griffith 1921). In addition, there 
have been many attempts to simulate the fracture behavior through numerical methods, 
some of which have been very successful (Belytschko 1999, Silling 2000). 
 

Recently, the phase field method that can easily handle topologically complex 
fractures such as crack initiation or crack branching was proposed (Miehe et. al. 2010) 
and has attracted the attention of academia. However, mesh refinement at the vicinity of 
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the crack tip is required to ensure the simulation accuracy. Several researchers have 
presented adaptive mesh refinement strategies for the phase field method (Patil et. al. 
2018, Tian et. al. 2019), which are not easy to use due to the difficulty of modeling. 
 

In this study, an adaptive mesh refinement strategy for the phase field method to 
simulate brittle fracture problems is presented. The fine mesh around the crack tip and 
the coarse mesh far from the crack tip are connected in a simple way using variable-
node finite elements (Lim et. al. 2012). 
 

In the following sections, we briefly review the formulation of the phase field 
method, and its performance is presented. 
 
2. Formulation 
 
2.1. Phase field approximation 
 

An elastic continuous body  contatining an internal sharp crack surface  is 

considered as shown in Fig. 1a. N  and D  represents the Neumann and Dirichlet 

boundaries, respectively. 
 

 
Fig. 1 Schematic of a solid body  (a) with a sharp crack surface , (b) with a 

diffusive crack surface ( )
ol

d  

 
In accordance with the idea proposed by Miehe et. al. (Miehe et. al. 2010), the 

potential energy functional  is given as 
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where ε  is the small strain tensor, cG  is the critical energy release rate, e  is the 

elastic strain energy density, d  is a damage or phase field variable, a value between 0 
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(undamaged) and 1 (fully cracked), and ol  is the characteristic length to adjust the width 

of crack diffusion as illustrated in Fig. 1b. 
 
 The decomposition of strain tensor proposed by Miehe (Miehe et. al. 2010) is 
used to prevent non-physical fracture due to compression and only to consider fracture 
due to tension. The decomposition based on the spectral decomposition is can be written 
as  
 

ε ε ε ,          (2) 

a a aε n n ,        (3) 

 

in which ε  and ε  are the positive and negative components of the strain tensor, 

repesctively, a  is the eigenvalue of the strain tensor, an  is the eigenvector of the 

strain tensor, and  is the Macaulay bracket operator defined as 

 

1

2
x x x .         (4) 

 
In addition, the elastic strain energy density function is also divided into the 

positive and negative parts 
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where  
e

 and 
e

 are the positive and negative parts of the elastic strain energy 

density function, ( )g d  is a degradation function to handle stress degradation. k  is a 

very small parameter to avoid numerical singularities. 
 
2.2. Governing equations 
 

The strong form of governing equations is expressed as 
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where b  is the body force. Note that Eq. (8) and Eq. (9) are obtained by performing the 

variation operations on Eq. (1). 
 

In order to account for the irreversibility of crack growth, the local history field is 
introduced as 

 

[0, ]
( , ) max ( ( , ))e

s t
H x t sε x ,        (10) 

 

where ( , )H x t  is the local history field, which replaces the elastic strain energy density 

function 
e

. 

 
3. Adaptive mesh refinement strategy 
 

We define the radius of the crack tip area as cr , and use fine meshes within the 

radius cr  and coarse meshes outside the radius cr  shown in Fig. 2a and Fig. 2b. Using 

variable-node finite elements (Lim et. al. 2012) illustrated in Fig 2c, the fine mesh and 
the coarse mesh are connected as described in Fig 2b. 
 

 
Fig. 2 (a) Domain around the crack tip (b) Mesh geometry for the adaptive refinement 

strategy (c) Variable-node finite element in the natural coordinate system 
 
4. Numerical example: Single-edge notched tension test 
 

A square plate with a single-edge crack is considered as shown in Fig. 3a. All 
dimensions are in mm. A prescribed vertical displacement is applied to the top edge of 
the plate. The material properties of this plate are given by 210E GPa, 0.3  and 

32.7 10cG kN/mm. The characteristic length is taken as 0.0075ol mm. The mesh 

geometry for the local refinement strategy (21791 elements) and for the adaptive 
refinement strategy (50x50 elements) are considered as illustrated in Fig. 3b and Fig. 3c, 

repectively. For the initial 500 load steps, 
51 10yu mm is prescribed, after that 

( )a ( )b ( )c

cr
r

sVariable-node finite elements

Crack tip

Seung Yong Jeong
강조

Thomas Kang
스티커 노트
The size of congress logo is larger than that of other papers. Reduce the size.



The 2020 World Congress on
The 2020 Structures Congress (Structures20)
25-28, August, 2020, GECE, Seoul, Korea

  

61 10yu mm is prescribed for 1300 load steps. The mesh geometry and crack 

pattern for the adaptive refinement strategy during crack propagation are described in 
Fig. 4. The load-displacement curve is illustrated in Fig. 5. The computation time is shown 
in Table 1. From Fig. 5 and Table 1, we can confirm that the computational performance 
and efficiency of the adaptive refinement strategy is excellent compared with those of the 
local refinement strategy. 
 

 
Fig. 3 (a) Geometry and boundary conditions for the single-edge notched tension test, 
(b) Mesh geometry for the local refinement strategy, (c) Initial mesh geometry for the 

adaptive refinement strategy 
 

 
Fig. 4 (a) Mesh geometry for the adaptive refinement strategy during crack propagation, 

(b) Crack pattern for the adaptive refinement strategy 
 
5. CONCLUSIONS 
 

In this study, an adaptive mesh refinement strategy for the phase field method to 
simulate brittle fracture problems was presented. The performance of the adaptive mesh 
refinement strategy was compared with those of the local mesh refinement strategy 
through a two-dimensional crack numerical example. As a result, it was shown that the 
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adaptive mesh refinement strategy has excellent computational efficiency while 
maintaining accuracy. In the future, we will extend this study by applying numerical 
techniques such as the strain smoothing method (Lee et. al. 2018) and the enriched finite 
element (Kim et. al. 2018, Kim et. al. 2019). Furthermore, it is valuable to extend this 
study to shell fractures (Lee et. al. 2014, Jeon et. al. 2015, Lee et. al. 2015, Ko et. al. 
2016, Ko et. al. 2017, Ko et. al. 2017, Ko et. al. 2017, Jun et. al. 2018, Lee et. al. 2019). 
 

 
Fig. 5 Load-displacement curve of single-edge notched tension test 

 
Table 1 Computation time for the single-edge notched tension test 

 Computation time  

 [sec] Ratio [%] 

Local refinement strategy 49989.34 100.00 

Adaptive refinement strategy 5466.08 10.93 
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