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ABSTRACT 
 

     This study aims to normalize operational and environmental influences in a 
long-term bridge health monitoring. After normalizing the operational and environmental 
influences, a copula-based feature sensitive indicator is proposed for the bridge health 
monitoring. Changes in the modal parameters with the time are identified by the copula 
statistical properties. A case study is carried out based on the observed vibration data 
collected from a steel plate girder bridge. The data including the temperature and 
acceleration for the past ten years is utilized to test the applicability of the proposed 
approach. Based on the results, the copula-based feature sensitive indicator and the 
selection of the best statistical model in removing operational and environmental 
influences are discussed.  
 
1. INTRODUCTION 
 
     Maintenance of civil infrastructure including bridge structures has been keen 
technical issues not only for developed countries but also for developing countries. 
There exist potential risks due to the loss of structural integrity. Therefore, it is highly 
demanded to establish an efficient inspector or monitoring method. Bridge health 
monitoring (BHM) using vibration data has been recognized as one of these 
technologies for timely inspections on bridge structures. 
     In recent studies, many techniques which identify the hidden information of 
structural integrity from the vibration data are proposed to diagnose damage in bridge 
structures (Dilena and Morassi 2011), and are successfully applied to laboratory 
experiments. Sartor et al. (1999) investigated how short-term monitoring can be used to 
evaluate bridges when accident occurs. However, bridge health monitoring is usually a 
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long-term task, and in the practice of long-term bridge health monitoring, bridge 
structures are suffering from changing environmental and operational conditions which 
influence significantly on observed vibration data. For example, the effects of 
temperature and vehicle weight lead to a statistical change in the measured vibration 
data (Peeters and De Roeck 2001) and therefore may lead to wrong decision making. 
The separation of these in-service environment influences from measured vibration data 
is an important technical issue. Kim et al. (2012) investigated the effects of temperature 
and traffic loading on structural health monitoring of a multi-span steel plate Gerber type 
bridge using the in-service vibration data as well as a damage-sensitive feature (DSF) 
derived from the coefficients of the autoregressive (AR) model. Kim et al. (2014) 
demonstrated that, in the Bayesian hypothesis testing utilizing long-term monitoring data 
from the healthy bridge, the damage of the bridge was judged as ‘barely worth 
mentioning’. Kim et al. (2013) also conducted other research works on long-term BHM 
and noticed that it is useful to use the Mahalanobis Distance (MD) to detect anomalies 
from the monitoring data in the multivariate time series data.  
     All these approaches are theoretically applicable only when the data from different 
sources are linearly dependent. However, nonlinear dependence is quite common in 
real sensor observations (Wah et al. 2017). In order to solve this problem, the 
regression method can be employed to remove the environmental effects contained in 
the time series. Moreover, accurate multivariate models are required to detect structural 
damage from multiple observations. Among the recent developments, the copula theory 
could provide a more efficient use of multivariate data in the structural health monitoring 
analysis (Zhang et al. 2015). Copula is a multivariate probability distribution whose 
marginal probability distribution are all uniform distributions. The copula model is used to 
analyze the statistical changes in the modal parameters. Also, it can be used to describe 
those dependencies between time series data. The changes in the modal parameters 
with the time can be identified by the copula statistical properties. 
     In this study, the copula-autoregressive integrated moving average 
(copula-ARIMA) model is utilized to remove environmental influences in the observed 
data for long-term BHM. Based on a case study of real bridge monitoring data, the use 
of copula-ARIMA model in long-term BHM is proposed. 
 
2. Methodology 
 
     2.1 Copula model 
     Copula has been widely used in quantitative finance to model and minimize risks. 
Generally, copula is a model which could connect univariate marginal distributions to a 
multivariate distribution. It is much more flexible than traditional ones as it can describe 
various kinds of dependencies which include association concepts such as concordance, 
linear correlation and the related dependence measures. For any random variables with 
a joint cumulative distribution function, the copula function can be expressed as Eq. (1). 
 

𝐶: [0,1]𝑁 → [0,1] and 𝐻(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛))           (1) 
 
where C: [0,1] N is an n-dimensional distribution function, H (·) is the cumulative joint 
distribution function and Fi (·) is the individual cumulative marginal distribution function 
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for the ith variable. Specifically, copula C is itself a cumulative distribution function which 
connects the one-dimensional probability distributions F1(x1),…,Fn(xn) to a multivariate 
probability distribution H(·).  
     The most important characteristic in a copula model is the dependence structure. 
Recently, it has also been considered as an approach in BHM field (Zhang et al. 2017).  
 
     2.2 ARIMA model 
     ARIMA model is widely applied in time series analysis. This model type is 
generally referred to as ARIMA(p, d, q), with the integers referring to the auto-regressive, 
integrated and moving average parts of the data set, respectively. ARMA model is the 
basic form of ARIMA model, the general formula of the ARMA model can be shown as 
Eq. (2). 
 

𝑋𝑡  =  𝑎1𝑋𝑡−1  +  … +  𝑎𝑝𝑋𝑡−𝑝 +  𝑏1𝜀𝑡−1  +  … +  𝑏𝑞𝜀𝑡−𝑞 +  𝜀𝑡        (2) 

 
where εt is a Gaussian white noise with zero mean. The ARMA model comprises two 
parts, namely AR and MA. In the AR model, the current value of the process, Xt, is 
expressed as a finite linear regression of previous values of the process. In the MA 
model, the current value of the process, Xt, is a finite linear regression of previous 
values of the white noise, εt-1, εt-2, …, εt-q, plus the current value of the noise εt. In the 
ARMA model, Xt is expressed as a sum of finite linear regression of previous values of 
the process, and the past and current white noise inputs.  
     It should be noticed that in the ARMA model (Ho et al. 1998) the degree of 
differencing (d) is set as 0. Then, to ignore deterministic component, the lag operator L 
shown in Eq. (3) is taken into consideration.  

(1 − 𝐿𝑘)𝑋𝑡 ≡ 𝑋𝑡 − 𝑋𝑡−𝑘                   (3) 

     Then the AR model can be shown as 

𝑋𝑡 = (1 + 𝑎1𝐿 + 𝑎2𝐿2 + ⋯ )𝜖𝑡 = 𝜃(𝐿)𝜖𝑡                 (4) 

     The MA model can also be shown as 

ϵ = (1 − 𝑏1𝐿 − 𝑏2𝐿2 − 𝑏3𝐿3 … )𝑋𝑡 = 𝑏(𝐿)𝑋𝑡                 (5) 

     Therefore, the ARIMA model can be expressed as 

𝑎(𝐿)𝑥𝑡 = 𝑏(𝐿)𝜖𝑡 → (𝑎(𝐿)/𝑏(𝐿))𝑥𝑡 = 𝜖                     (6) 

where the differencing is not equal to 0. Differencing a non-stationary process d times 
can transfer it to a nearly stationary process. For example, if yt is non-stationary, through 
the following Eq. (7) we can turn it into a nearly stationary one. 

   𝑥𝑡 = (1 − 𝐿)𝑑𝑦𝑡                              (7) 

 
     2.3 Copula-ARIMA model 
     Copula-ARIMA model is a compound model constructed based on ARIMA and 
copula model. Since the ARIMA model has normalization step, so that here the 
Gaussian copula will be taken into consideration. It will be utilized to judge the variation 
of bridge frequency during long-term monitoring. 
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3. LONG-TERM MONITORING ON AN IN-SERVICE STEEL PLATE-GIRDER 
BRIDGE 
 
     3.1 Observation bridge 
     A steel plate-girder bridge with Gerber system which is constructed in 1960 is 
monitored. It has a length of 187m with 7 spans and width of 8m. The bridge has been in 
service for over 55 years. The general layout of this bridge is illustrated in Fig. 1. The 
observation bridge experienced fatigue damage caused by higher percentage and 
volume of heavy trucks. A long-term monitoring for this bridge thus has been conducted 
since 2008 (Kim et al. 2018). The earliest observed period is considered as the time for 
the bridge in an intact condition. After normalizing the environmental influences, the data 
observed during this period can be considered as reference data which will then be 
compared with the newly observed data. Therefore, the main focus is to examine the 

first year’s data, which is recorded from 6th August 2008 to 21st June 2009. 

 

a) b)  

Fig. 1 Target bridge a) General layout and b) Sensors location. 
 
 

a)  b)  

Fig. 2 Frequencies and temperature during the first monitoring year: a) 1st bending mode 
and b) 2nd bending mode. 

 

a)  b)  

Fig. 3 Frequencies and traffic volume during the first monitoring year: a) 1st bending 
mode and b) 2nd bending mode. 
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a) b)  

Fig. 4 Regression analysis considering dependency between frequency and 
temperature: a) linear regression and b) nonlinear regression. 

 

 
 

Fig. 5 Comparison of observed data to data after being normalized by linear and 
polynomial regressions. 

 

 

     3.2 Data dependency 
     The correlation of frequency and environmental influences such as temperature 
and traffic will be investigated. Here, as an example, this study focuses on the frequency 
measured at the sensor located span center on the outbound lane. Frequency and 
temperature were plotted as shown in Fig. 2, which shows that the frequency and 
temperature in the first monitoring year has a negative correlation with each other. 
Following the same approach, it can be observed existence of the negative correlation 
between frequency and traffic volume, as shown in Fig. 3. From the observation 
between identified frequencies and temperature and daily traffic, it is clear that 
environmental factors are affecting the identified frequencies of the bridge. 
 
     3.3 Normalizing environmental influences by regression 
     Many techniques were developed to identify the hidden information of structural 
integrity based on the assumption of linear dependence. However, it is not always 
enough to idealize seasonal fluctuations of identified frequencies utilizing linear 



The 2018 Structures Congress (Structures18) 
Songdo Convensia, Incheon, Korea, August 27 - 31, 2018

  

regressions. Therefore, both linear and nonlinear regressions are considered to 
normalize environmental influences. First, a linear regression to the 
temperature-frequency model is considered, and those results are shown in Fig.4a). 
Black circles show the observed data and red triangles show the data after the linear 
regression. Next, a polynomial regression as a nonlinear regression is applied to model 
the relationship between frequency and temperature as shown in Fig.4b). Unlike the 
linear regression, there are few limitations on the way that parameters can be used in 
the functional part of a nonlinear regression model. The nonlinear regression can 
produce good estimates of the unknown parameters in the model with relatively small 
data sets.  
 
     The frequency time series after normalizing the effect of both temperature and 
traffic at the same time is shown in Fig. 5. After normalizing environmental influences, 
the mean frequency was shifted to the upper side. One reason for the shift might exist 
on the observations of sharp peaks (seasonal outliers) due to drastic changes in traffic 
during major holidays such as New Year in January, Golden Week in May and OBON in 
August. 
 

 
 

y = k1x + b1 
k1 = 0.0001326 
b1 = -1.314e-18 

 
 
a)  

 
 
 
 
 

y = k2x + b2 

k2 = 0.0006125 
b2 = 1.577e-18 

 
 
b) 
 
 
 
 

y = k3x + b3                                                        
k3 = -0.0005546 
b3 = -0.0001169 

       
c) 
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Fig. 6 Comparison of correlation of temperature and frequency residual: a) linear 
regression, b) polynomial regression and c) ARIMA model. 

 

     3.4 Normalizing environmental effects by utilizing ARIMA model 
     The time series model will be taken into consideration since the seasonal outliers 
may can be removed automatically during the prediction. Correlation of residuals of 
frequency and temperature is shown in Fig. 6, where x-axis denotes temperature 
residuals. In Fig.6 a), the y-axis shows the residual of frequency which has been 
normalized by the linear regression. In Fig.6 b), the y-axis shows the residual of 
frequency which has been normalized by the polynomial regression. In Fig.6 c), the 
y-axis shows the residual of observed data by applying the ARIMA model directly. The 
flatter the relation is, the better the regression is. 
 

     From k1, k2 and k3 values in Fig.6, the k1 value is the smallest which means that 
the linear regression performs best when normalizing environmental effects. However, 
as shown in Fig.5 the frequency after normalizing environmental effects shift to upside, 
which means that the linear regression will be affected easily by the outliers. This study 
also utilizes Akaike information criterion (AIC) which is a measurement for the relative 
quality of statistical models (Akaike 1974) and serves as a useful tool for model 
selection to judge the goodness of fit with these three approaches. The AIC value of 
ARIMA model was -1050.61, while the AIC values of linear and nonlinear regressions 
were -844.4535 and -854.6544 respectively. The better the independent variables of this 
model are in predicting the dependent variable, the smaller the AIC becomes. Compare 
to other two regression methods, the ARIMA model resulted in the smallest AIC value so 
that the monitored data by the ARIMA model is used in long-term monitoring. 
 
     3.5 Applying Copula-ARIMA model in long-term monitoring 
     The acceleration responses monitored at the DA1 and DA2 shown in Fig. 1 are 
investigated. DA2 locates at the internal hinge where fatigue cracks were observed, and 
DA1 locates at the span center. The joint probability distribution of the identified 
frequencies at DA1 and DA2 is considered to judge the bridge health condition. 
     In applying the copula-ARIMA model, the ARIMA model was applied to 
observation data for normalizing environmental effects. The best fit ARIMA models for 
the frequency for the first bending mode were both following ARIMA (2,1,1). For the 
copula model, there are basically two families of copulas, Gaussian copula and 
Archimedean copula. In this study, since normalization will be applied on the 
observation data, the fundamental Gaussian copula which can be utilized in normal 
distribution was selected. The Gaussian copula can be written as Eq. (8). 
 

𝐶(𝑢1, … , 𝑢𝑁; 𝜌) = 𝛷𝜌(𝛷−1(𝑢1) + ⋯ + 𝛷−1(𝑢𝑁))                    (8) 
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where ρ denotes a correlation coefficient matrix;  𝛷𝜌 ( · ) and 𝛷−1(·)  denote the 

standard multivariate normal distribution function and the inverse function of standard 
normal distribution function respectively. 
     For two variables, the Gaussian copula has only a single parameter ρ. It 
conveniently incorporates the correlation into a function that combines each of the 
marginal distributions to produce a bivariate cumulative distribution function. 
Considering the bivariate dependence, there are some measurements like Pearson 
correlation coefficient, Spearman's rho and Kendall’s tau. These three methods are 
utilized to judge the relationship between residues without utilizing copula model. They 
can only judge whether the correlation is strong or weak, but they cannot show the 
variation in long term monitoring. Therefor here the parameter of Gaussian copula will 
be utilized to judge the variation of the joint probability distribution of the frequency 
identified from accelerations measured at DA1 and DA2 sensors. 
     After applying the copula-ARIMA model in long-term monitoring, the variation of 
the joint probability distributions for the first and second bending modes are shown in Fig. 
7, Table 1 and Table 2. Here the parameter of Gaussian Copula is considered as 
indicator to detect the potential change in the bridge integrity. Fig.7 demonstrated that 
the mean value of the parameter of first bending mode keeps increasing while the mean 
value of the parameter of second bending mode keeps decreasing during observation 
years. This may due to the change in structural conditions of the bridge. 
 

a)   
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b)  

Fig. 7 Long-term variations of parameter of Gaussian copula: a) first bending mode; b) 
second bending mode. 

 
 

Table 1 Parameter of Gaussian copula of first bending mode in different years. 

Year Min. Median Mean Max. 

2008 0.4038 0.8142 0.7968 0.9539 

2014 0.3310 0.8445 0.8263 0.9716 

2015 0.0255 0.8570 0.8357 0.9630 

 

Table 2 Parameter of Gaussian copula of second bending mode in different years. 

Year Min. Median Mean Max. 

2008 -0.3384 0.7334 0.7033 0.9462 

2014 -0.7604 0.6701 0.6414 0.9583 

2015 -0.7112 0.6112 0.5805 0.9186 

 
 
4. CONCLUSIONS 
 
Feasibility of normalizing the environmental effects in long-term bridge health monitoring 
such as temperature and traffic volumes by means of linear and polynomial regressions 
and ARIMA model is investigated utilizing long-term monitoring data of the steel plate 
girder bridge. Observations showed that the nonlinear regression model resulted in 
better regression than the linear regression model. However, the mean frequency was 
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shifted to the upper side after normalizing environmental influences, which might be 
caused by seasonal outliers due to drastic changes in traffic during major holidays. 
However, in terms of AIC, the ARIMA model led to the best model.  
 
A copula-ARIMA model showed that the mean value of parameter of the Gaussian 
copula was increasing for the first bending mode while the parameter was deceased for 
the second bending mode during the monitoring. This may due to changes in bridge 
integrity, although the mechanism of increasing and decreasing trends is not clear yet. 
The next step for this study is further investigations considering higher frequencies and 
other damage sensitive feature, and other copulas.  
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