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ABSTRACT

Temperature fatigue reflective crack is a major distress in asphalt pavement and
may induce further destroys. Many methods have been conducted to solve this problem.
However, the arbitrary cracking path has not been investigated. In this paper, the
extended finite element method (XFEM), which has the advantage in considering the
arbitrary cracking propagation, is used to investigate the temperature fatigue reflective
crack. Firstly, the temperature field model and XFEM model are built with same math but
different element types. In the temperature field model, the temperature distribution was
obtained using DFLUX subroutine and FILM subroutine. Then the temperature
distribution is applied to XFEM model and the thermal fatigue reflective cracking
mechanism is investigated. Moreover, the inclined degree of initial crack in up-base is
considered. This better understanding is expected to provide more scientific insights to
advance the current structural pavement design practices and pavement repairing.

1. INTRODUCTION

Reflective crack is a major distress in semi-rigid base asphalt pavement structure,
which may accelerate further destroys. The crack can be resulted by a single
temperature drop, several cyclic temperature changes or traffic passing. Many
researches had demonstrated that temperature was more important than traffic load that
induced reflective crack (MOLENAAR, 1993, Millien A, 2012). The cracks existing in
semi-rigid base could induce stress concentration and propagated up to the asphalt
overlay when temperature changed. In order to better understand the mechanism
leading to reflective crack, several methods had been conducted.

In mechanistic-empirical pavement design guide, thermal-cracking prediction
model was used to predict the thermal cracking behavior and amount of thermal cracks
(Hiltunen, 1994). In this model, tensile strength was used as the cracking threshold for
cracking initiation (Paris, 1961). AASHTO T321-07 (AASHTO, 2007) conducted four
points bending beam test to determine the fatigue life of asphalt mixture. Then many
researchers investigated the fatigue cracking resistance of asphalt mixture using this
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method(Li, 2012, Islam, 2012, Ameri, 2017, Davar, 2017). Many single-edge notched
beam tests were carried out to evaluate the fracture behavior of asphalt concrete (Song,
2006, Braham, 2012, Yang, 2014). Seo (2008) used acoustic emission to monitor
fatigue damage and healing in asphalt concrete. Ahmed (2013) investigated cracking
resistance of thin-bonded overlays by compact tension. Moreover, numerous notched
semi-circle bending tests were conducted to investigated the cracking propagation of
asphalt mixture (Wang, 2013, Liu, 2014, Cannone Falchetto, 2017). Gonzalez-Torre
(2015) studied the effectiveness geosynthetics as anti-reflective cracking system and
the influence of loading frequency on cracking propagation. However, in these studies,
only fracture of asphalt mixture samples and the anti-fracture property of asphalt mixture
were emphasized, the cracking mechanism of reflective cracking was not analyzed.

In order to better understand the cracking mechanism of thermal reflective
cracking of asphalt pavement, numerous numerical methods were also carried out
(Dave, 2007, Kim, 2009, Dave, 2010, Yekai, 2010, Ban, 2017, Gajewski, 2014).
However, in these studies, a single temperature drop that induced thermal reflective
cracking of asphalt pavement was only discussed. M. |. Hossain (2017)investigated the
thermal fatigue of asphalt pavement using XFEM. But only crack propagation depth was
studied.

In this study, a XFEM simulation to evaluate thermal fatigue reflective crack in
semi-rigid base asphalt pavement is carried out. Temperature distribution in pavement
structure is obtained using DFLUX subroutine and FILM subroutine. Then the
temperature distribution is applied to XFEM model and the fracture mechanism is
analyzed. The influences of inclined degrees of initial crack on fracture life, cracking
width, cracking path and stress distribution are evaluated.

2. TEMPERATURE FIELD IN PAVEMENT STRUCTURE

2.1 Thermal condition analysis

As the external temperature changes continuously with time, the pavement
structure also undergoes changing of temperature. So in this section, solar radiation,
surface heat flux and pavement surface radiation are taken into consideration to
accurately determine the temperature distribution in pavement structure.

The solar radiation is:

0 0<t<12-<
2
c c
q(t) =4 g, cosma(t —12) 12_§£t£12+§ (1)
0 12+%sts24
g, = 0.131ImQ (2)
m=12/c 3

In which, g is maximum solar radiation; Q is the total solar radiation; c is the
effective sunshine hours; w is circular frequency, w=21/24.
According to Fourier Series, equation (1) can be expressed as:
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The minimum external temperature is nearly at 5 am, and the maximum external
temperature is at 14 pm. The function that simulates the surface heat flux is expressed
as:

T, =T, +T,[0.96sin ot —t,)+0.14sin 20t ~,)] )

: — : = 1 i : :
In which, T, is daily average temperature, Ta:E(Tamax +Ta'“'”); Tm is daily

l i max min .
temperature range, T, =E(Tamax —Ta’“”); T, and T,"" is maximum temperature and

minimum temperature, respectively; fo initial phase, t=9.
The heat transfer coefficient between pavement surface and external temperature
is meanly influenced by air speed and it can be expressed as:
h.=3.7v,+9.4 (8)
In which, h. is heat transfer coefficient; v,, is Daily-mean air speed.
The pavement surface radiation boundary can be expressed as:

Je =¢0 |:(T1 o T, )4 _(Ta -T, )4} 9

In which, gr is pavement surface radiation; € is pavement emissivity, €=0.81; o is
Stefan-Boltzmann parameter, 0=5.6697x10-8; Ti|;=0 iS the temperature of pavement
surface; T, is air temperature; Tz is absolute zero, Tz=-273C.

2.2 Pavement model

In order to better understand the cracking mechanism of semi-rigid asphalt
pavement, a kind of typical 2D asphalt pavement model is developed. Fig.1 illustrates
the pavement modal as well as the thickness of layers, initial crack and thermal
boundary. As can be seen in the Fig.1, the thermal boundaries, which include solar
radiation, surface heat flux and pavement surface radiation, are taken into consideration.
Different inclined degrees of initial crack are also considered in this paper showed in
Fig.2. The initial crack penetrates the up-base with the inclined degrees of the initial
crack 0C, 10C, 20C and 30C.

In this paper, two kinds of model, temperature field model and XFEM model, are
meshed uniformly but different element types are used. DC2D3, a 4-node linear heat
transfer quadrilateral element is used in temperature field model, and CPS4R, a 4-node
bilinear plane stress quadrilateral element is used in XFEM model. Firstly, the
temperature distribution in the temperature field model is obtained according to the
temperature boundary. Then, the temperature field is applied to the XFEM model to
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simulate the cracking initiation and propagation induced by cyclic temperature.

In the temperature field model, the thermal properties including thermal
conductivity, specific heat, expansion coefficient, solar radiation absorption and surface
emissivity are listed in Table 1. In addition, the fracture parameters which are needed in

XFEM model are provided in Table 2.

Table 1 The thermal properties of the pavement materials

Properties Overlay Upper-base Sub-base Soil base
Density(kg/m®) 2300 2200 2100 1800
Thermal conductivity (J/m.h.C) 4680 5616 5148 5616
Specific heat (J/Kg.C) 924.9 911.7 942.9 1040.0
Solar radiation absorption 0.9
Surface emissivity 0.81
Table 2 The fracture parameters of pavement materials
Parameters Overlay Upper-base  Sub-base  Soil base
Modulus (MPa) 8500 9073 5636 1500
Poisson ratio 0.35 0.25 0.3 0.35
Expansion coefficient (‘C ™) 2e” 0.98e” 0.98e® 0.45e°
Tensile strength (MPa) 2 2 1 -
Fracture energy (mJ/mm?) 1.5 0.98 0.98 -

Thermal boundaries: solar radiation. Surface heat flux. Surface radiatio?
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Fig. 1 Asphalt pavement structure
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Fig. 2 Different lengths of initial crack and inclined degrees of initial crack

2.3 Temperature distribution
According to the thermal boundary in temperature field model, the temperature
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distribution changing with time can be obtained. Fig. 3 shows the temperature
distribution in the asphalt pavement structure. As can be seen, the temperature gradient
exists in the pavement structure and the distribution is conformed to the practical
situation. What's more, the temperature in different depths changing circularly with time
is showed in Fig. 3. The cyclic temperature is applied to the XFEM model, and the
thermal stress is produced. Then the cracking initiation and propagation is analyzed.
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Bottom of Up-base
Bottom of Sub-base
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Fig. 3 Temperature distribution in asphalt pavement structure

3. RESULTS AND DISCUSSIONS

A series of models with different inclined degrees of initial crack are performed.
The influences of inclined degree of initial crack on cracking propagation are analyzed.
What's more, the mechanisms of thermal fatigue reflecting cracking are investigated.

3.1 Fracture life

Many researches have testified that the inclined degree of initial crack has great

influence on stress distribution. So in this section the influence of inclined degree of
initial crack on fracture life is analyzed.
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Fig. 4 Fracture life versus cracking propagation

Fig. 4 presents the fracture life versus cracking propagation with different inclined
degrees of initial crack in different models. As shown in the figure, the crack propagates
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fastest in the models with inclined degree 0C, and the crack propagates slowest in the
models with inclined degree 30C. The crack propagates faster with decrease of the
inclined degree. It indicates that the inclined degrees of initial crack have great influence
on fracture life. What's more, the crack propagates smoothly in the models with inclined
degree 0C. However, the crack propagates unsmoothly if there is inclined degree of
initial crack in the models. This is because that in the model with inclined degree 0C,
there is meanly tensile stress (S11 in this paper) at the cracking tip. The crack
propagates up straightly. But if the inclined degree is not 0C, there is not only tensile
stress but shear stress at the cracking tip.
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Fig. 5 Cracking initiation time and completion time in different models with various
inclined degrees
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Fig. 5 compares the effect of inclined degree of initial crack on the cracking
initiation time and cracking completion time for different models. The cracking initiation
time and cracking completion time both increase with the increase of inclined degree. In
addition, the cracking initiation time and cracking completion time in the model with
inclined degree 30T are 3.5 times and 2.5 time as long as that in the model with

inclined degree 0C. It indicates that the propagating velocity is seriously influenced by
the inclined degree of initial crack.

3.2 Analysis of stress distribution

The tensile stress and cracking width are both important factors to the reflective
crack in asphalt pavement. Fig. 6 shows the tensile stress and cracking width at 1cm
above the initial crack tip and at overlay surface. As shown in Fig. 6, the maximum
tensile stress at surface does not change in the first stage. Then the tensile stress
increases with the cracking propagation in the second stage. In the third stage, the
crack penetrates the overlay and the tensile stress decrease rapidly and there is no
capacity near the reflective crack. After reflective crack penetrating the overlay, there is
a visible crack in overlay. Moreover, the cracking width increases to the peak value with
the increase of temperature cycles.
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Fig. 6 Tensile stress and cracking width at surface

In addition, the influence of inclined degree of initial crack on maximum tensile
stress and maximum cracking width at 1cm above the cracking tip and surface are
briefly discussed. Fig. 7 shows the influence of inclined degrees of initial crack on
maximum tensile stress. It illustrates that the maximum tensile stresses at 1cm above
the cracking tip and surface both decrease with the increase of inclined degree of initial
crack. Fig. 8 shows the influence of inclined degrees of initial crack on maximum
cracking width. It illustrates that the maximum cracking width at 1cm above the cracking
tip and surface also decrease with the increase of inclined degree of initial crack. This is
because that in the models with the inclined degree 0C, there is only tensile stress that
affects the cracking propagation. But in other kinds of models, there is not only tensile
stress, but also shear stress that induces the reflective cracking propagation.
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Fig. 7 Influence of inclined degrees of initial crack on max tensile stress (S11)
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Fig. 8 Influence of inclined degrees of initial crack on cracking width

Fig. 9 shows the progressive stress (S11) contours during the crack has initiated
and propagated through pavement structures. In Fig. 9(a), stress concentration
appeared at the cracking tip before cracking initiation. In Fig. 9(b), the crack propagated
up and the cracking width increased. However, the stress at cracking tip was still greater
than in other element. In Fig. 9(c), the crack propagated through the pavement overlay
and the stress near the crack released. Moreover, an obvious V-crack was formed in the
overlay.
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Fig. 9 Tensile stress contour of pavement crack propagation

3.3 Mechanisms of thermal fatigue reflecting cracking

Fig. 10 gave an insight into the fracture path. It obviously showed that the inclined
degree of initial crack had a great influence on fracture path. If the initial degree was 0C,
the crack propagated up straightly. If the initial degree was greater than 0C, the crack
propagated along arbitrary path. Moreover, the fracture degree got smaller than the
initial cracking degree.

0.C. . . .
30.C. . . .

Fig.10 Fracture path

4 Conclusion

This paper presented mechanistic modeling approach to investigate the thermal fatigue
reflective cracking in semi-rigid base asphalt pavement. It had been proved that the
temperature distribution could be obtained by DFLUX subroutine and FILM subroutine
and XFEM was an effective method to analyze the thermal crack. Stress distribution and
cracking width were the important indications to analyze the cracking initiation and
propagation. Moreover, the inclined degree of initial crack was primary factor to thermal
reflective crack. This better understanding was expected to provide more scientific
insights to advance the current structural pavement design practices and pavement
repairing. Based on the simulation results, the following conclusions could be drawn:
The temperature distribution in pavement structure and circularly changing with time
was accurately obtained with the subroutines of DFLUX and FILM. It could present
significant insights into the temperature distribution in the layered pavement structure.
The stress response and cracking width were significantly affected by the variation of
inclined degree of initial crack. This study clearly demonstrated that the fracture life had
great difference in the models with variations of initial cracking condition.

In XFEM models, the reflective crack propagating along arbitrary path could be
successfully simulated. Inclined degree of initial crack had great influence on fracture
path. In addition, fracture geometry during the cracking propagation could be clearly
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understood. Finally, a V-crack was formed in the pavement overlay after the reflective
crack penetrated the overlay.
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