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ABSTRACT 
 

     Temperature fatigue reflective crack is a major distress in asphalt pavement and 
may induce further destroys. Many methods have been conducted to solve this problem. 
However, the arbitrary cracking path has not been investigated. In this paper, the 
extended finite element method (XFEM), which has the advantage in considering the 
arbitrary cracking propagation, is used to investigate the temperature fatigue reflective 
crack. Firstly, the temperature field model and XFEM model are built with same math but 
different element types. In the temperature field model, the temperature distribution was 
obtained using DFLUX subroutine and FILM subroutine. Then the temperature 
distribution is applied to XFEM model and the thermal fatigue reflective cracking 
mechanism is investigated. Moreover, the inclined degree of initial crack in up-base is 
considered. This better understanding is expected to provide more scientific insights to 
advance the current structural pavement design practices and pavement repairing. 
 
1. INTRODUCTION 
 

Reflective crack is a major distress in semi-rigid base asphalt pavement structure, 
which may accelerate further destroys. The crack can be resulted by a single 
temperature drop, several cyclic temperature changes or traffic passing. Many 
researches had demonstrated that temperature was more important than traffic load that 
induced reflective crack (MOLENAAR, 1993, Millien A, 2012). The cracks existing in 
semi-rigid base could induce stress concentration and propagated up to the asphalt 
overlay when temperature changed. In order to better understand the mechanism 
leading to reflective crack, several methods had been conducted. 

In mechanistic-empirical pavement design guide, thermal-cracking prediction 
model was used to predict the thermal cracking behavior and amount of thermal cracks 
(Hiltunen, 1994). In this model, tensile strength was used as the cracking threshold for 
cracking initiation (Paris, 1961). AASHTO T321-07 (AASHTO, 2007) conducted four 
points bending beam test to determine the fatigue life of asphalt mixture. Then many 
researchers investigated the fatigue cracking resistance of asphalt mixture using this 
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method(Li, 2012, Islam, 2012, Ameri, 2017, Davar, 2017). Many single-edge notched 
beam tests were carried out to evaluate the fracture behavior of asphalt concrete (Song, 
2006, Braham, 2012, Yang, 2014). Seo (2008) used acoustic emission to monitor 
fatigue damage and healing in asphalt concrete. Ahmed (2013) investigated cracking 
resistance of thin-bonded overlays by compact tension. Moreover, numerous notched 
semi-circle bending tests were conducted to investigated the cracking propagation of 
asphalt mixture (Wang, 2013, Liu, 2014, Cannone Falchetto, 2017). Gonzalez-Torre 
(2015) studied the effectiveness geosynthetics as anti-reflective cracking system and 
the influence of loading frequency on cracking propagation. However, in these studies, 
only fracture of asphalt mixture samples and the anti-fracture property of asphalt mixture 
were emphasized, the cracking mechanism of reflective cracking was not analyzed. 

In order to better understand the cracking mechanism of thermal reflective 
cracking of asphalt pavement, numerous numerical methods were also carried out 
(Dave, 2007, Kim, 2009, Dave, 2010, Yekai, 2010, Ban, 2017, Gajewski, 2014). 
However, in these studies, a single temperature drop that induced thermal reflective 
cracking of asphalt pavement was only discussed. M. I. Hossain (2017)investigated the 
thermal fatigue of asphalt pavement using XFEM. But only crack propagation depth was 
studied. 

In this study, a XFEM simulation to evaluate thermal fatigue reflective crack in 
semi-rigid base asphalt pavement is carried out. Temperature distribution in pavement 
structure is obtained using DFLUX subroutine and FILM subroutine. Then the 
temperature distribution is applied to XFEM model and the fracture mechanism is 
analyzed. The influences of inclined degrees of initial crack on fracture life, cracking 
width, cracking path and stress distribution are evaluated. 
 
2. TEMPERATURE FIELD IN PAVEMENT STRUCTURE 
 

2.1 Thermal condition analysis 
As the external temperature changes continuously with time, the pavement 

structure also undergoes changing of temperature. So in this section, solar radiation, 
surface heat flux and pavement surface radiation are taken into consideration to 
accurately determine the temperature distribution in pavement structure. 

The solar radiation is: 
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In which, q0 is maximum solar radiation; Q is the total solar radiation; c is the 

effective sunshine hours; ω is circular frequency, ω=2π/24. 
According to Fourier Series, equation (1) can be expressed as: 
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The minimum external temperature is nearly at 5 am, and the maximum external 
temperature is at 14 pm. The function that simulates the surface heat flux is expressed 
as: 

  0 00.96sin ( ) 0.14sin2 ( )a a mT T T t t t t       (7) 

In which, aT  is daily average temperature,  max min1

2a a aT T T  ; Tm is daily 

temperature range,  max min1

2m a aT T T  ; max
aT  and min

aT  is maximum temperature and 

minimum temperature, respectively; t0 initial phase, t0=9. 
The heat transfer coefficient between pavement surface and external temperature 

is meanly influenced by air speed and it can be expressed as: 
 3.7 9.4c wh v   (8) 

In which, hc is heat transfer coefficient; vw is Daily-mean air speed. 
The pavement surface radiation boundary can be expressed as: 

    4 4
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In which, qF is pavement surface radiation; ε is pavement emissivity, ε=0.81; σ is 
Stefan-Boltzmann parameter, σ=5.6697×10-8; T1|z=0 is the temperature of pavement 
surface; Ta is air temperature; TZ is absolute zero, TZ=-273℃. 
 

2.2 Pavement model 
In order to better understand the cracking mechanism of semi-rigid asphalt 

pavement, a kind of typical 2D asphalt pavement model is developed. Fig.1 illustrates 
the pavement modal as well as the thickness of layers, initial crack and thermal 
boundary. As can be seen in the Fig.1, the thermal boundaries, which include solar 
radiation, surface heat flux and pavement surface radiation, are taken into consideration. 
Different inclined degrees of initial crack are also considered in this paper showed in 
Fig.2. The initial crack penetrates the up-base with the inclined degrees of the initial 
crack 0℃, 10℃, 20℃ and 30℃. 

In this paper, two kinds of model, temperature field model and XFEM model, are 
meshed uniformly but different element types are used. DC2D3, a 4-node linear heat 
transfer quadrilateral element is used in temperature field model, and CPS4R, a 4-node 
bilinear plane stress quadrilateral element is used in XFEM model. Firstly, the 
temperature distribution in the temperature field model is obtained according to the 
temperature boundary. Then, the temperature field is applied to the XFEM model to 
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understood. Finally, a V-crack was formed in the pavement overlay after the reflective 
crack penetrated the overlay. 
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