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ABSTRACT 

 
This paper is concerned with an extension of Petrov-Galerkin natural element 

method to the numerical prediction of stress intensity factors (SIF). The interaction 
integral is implemented in a frame of PG-NE method in which the weighting function 
defined over a crack-tip integral domain is interpolated by Laplace interpolation 
functions. Two Cartesian coordinate systems are employed and the displacement, 
strains and stresses which are solved in the grid-oriented coordinate system are 
transformed to the other coordinate system aligned to the angled crack. The present 
method is validated through the numerical experiments with the angled center cracks, 
and the numerical accuracy is examined with respect to the grid density, crack length 
and angle. It is observed from the numerical results that the present method 
successfully and accurately evaluates the stress intensity factors of 2-D angled cracks 
for various crack lengths and crack angles. 
 
1. INTRODUCTION 
 

The numerical calculation of stress intensity factors were traditionally made by either 
the J-integral method or the interaction integral method. Since the late 1990s, the 
extension of meshfree method to this problem have been actively progressed, in 
particular for the calculation of stress intensity factors by the interaction integral method, 
inspired by the fact that the interpolation functions used in meshfree methods provide 
the high smoothness. Belytschko et al., (1995) and Pant et el. (2011) applied the 
element-free Galerkin (EFG) method to compute the singular stress fields and the 
stress intensity factors in 2-D fracture problems involving fatigue crack growth, dynamic 
crack propagation and interface cracks. Fleming et al., (1997) enriched the EFG 
method by adding asymptotic fields to the trial function and augmenting the basis 
function by the asymptotic fields, in order to accurately calculate stress intensity factors 
with fewer degrees of freedom. Ching and Batra (2011) enriched the polynomial basis 
functions in the meshless local Petrov-Galerkin (MLPG) method with the crack tip 
singular fields to predict the singular stress fields near a crack tip and stress intensity 
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factors. Rao and Rahman (2000) applied the EFG method to calculate the stress 
intensity factor and to simulate the crack propagation in 2-D linear fracture problems 
under mode-I and mixed-mode loading conditions. Fan et al. (2004) and Shi et al. 
(2013) enriched the partition-of-unity (POU) method to calculate the stress intensity 
factors of 2-D angled cracks and to solve multiple crack problems. 

As an extension of our previous works (Cho and Lee, 2006b; 2006c; 2014), this 
paper intends to extend the Petrov-Galerkin natural element (PG-NE) method to the 
computation of stress intensity factors of 2-D angled cracks. To overcome the 
numerical integration inaccuracy caused by the discrepancy between the supports of 
test and basis functions, PG-NE method uses Voronoi polygon-based Laplace 
interpolation functions and CS-FE basis functions for the trial and test functions, 
respectively. The interaction integral is implemented in the frame of PG-NE method for 
which a crack-tip integration domain is defined by specifying the domain defining radius 
and the weighting function wherein is interpolated in terms of Laplace interpolation 
functions. The numerical experiments are carried out with the angled center cracks to 
examine the validity and numerical accuracy of the present method. The stress 
intensity factors are evaluated for various grid densities, crack lengths and crack angles 
and compared with the exact solution. 
 
2. MIXED-MODE STRESS INTENSITY FACTOR 

 
For two-dimensional planar configuration shown in Fig. 1(a), the energy release rate 

per unit crack extension in the x direction can be defined by the path-independent 

J integral given by 
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using the indicial notation (i.e., xx 1  and yx 2 ). Here, 2/W    is the strain 

energy density and n  denotes the outward unit vector normal to an arbitrary path   
enclosing the crack tip in a counter-clock wise sense. For a mixed-mode crack problem, 
the energy release rate J  is related to the stress intensity factors such that 

E
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according to Irwin’s relation (1957). Here, E  becomes E for the plane stress state and 

 21 /E  for the plane strain state, respectively. Note that the displacement, strains 

and stresses are calculated based on the grid-oriented coordinate system  y,x,O  and 

then transformed to the values in the crack-line oriented coordinate system  y,x,O   by 

the chain rule. 
Two stress intensity factors IK  and IIK  in Eq. (2) can be extracted using the 

interaction integral which considers two equilibrium states of a cracked body. Here, 
state 1 is the actual equilibrium state of a body subject to the prescribed boundary 
conditions while state 2 denotes an auxiliary equilibrium state which corresponds to the 
asymptotic crack-tip displacement and stress fields. The interaction integral denoted by 
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 21,M  for the two equilibrium states is defined by 
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where  21,W  denotes the mutual strain energy density defined by 
           2122121 /W ,   . 

 

           
                               (a)                                                                         (b) 
Fig.1 (a) A cracked 2-D linear elastic body,  (b) an integral domain A  and the weighting 
function  xq  

 
The line integral (3) is not always best for numerical calculation because the 

integration of displacement gradients, strains and stresses of states 1 and 2 along the 
non-regular arbitrary path   becomes rather painstaking. Thus, it is desired to be 
transformed into an area integral form, for which Eq. (3) is firstly rewritten as 
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by extending the path   to occC     along two crack faces as shown in Fig. 

2 and by multiplying a sufficiently smooth weighting function  xq . It is not hard to 

realize that Eqs. (3) and (4) become identical when  xq  becomes unity on   and 

vanishes on o , together with the fact that the crack faces are traction free and straight 

in the darkened donut-type region A . By taking the divergence theorem to Eq. (4) and 
letting the inner path   be shrunk to the crack tip, the transformed line integral (4) 
ends up with 
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All the quantities in Eq. (5) are evaluated with respect to the crack-line oriented 
Catesian coordinate system  y,x,O  . 
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3. INTERACTION INTEGRAL BY PG-NE METHOD 
 

The boundary value problem of 2-D linear elasticity in the strong form is converted 
to the weak form according to the usual virtual work principle: Find  xu  such that 

    dsˆdvdv:
N
 


vtvbuv                                      (6) 

for every admissible displacement field  xv  in the grid-oriented Cartesian coordinate 

system  y,x,O . In order for the Petrov-Galerkin natural element approximation using a 

given non-convex natural element grid NEM  composed of N  grid points and Delaunay 

triangles as shown in Fig. 2(a), trial and test displacement fields  xu  and  xv  are 

expanded as 
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with Laplace interpolation functions  xJ  shown in Fig. 2(b) and CS-FE basis functions 

 xI . The reader may refer to the references (Cho and Lee, 2006a; Cho et al., 2013) 

for more details on the CS-FE basis function defined on three-node trangular elements 
and the definition of Laplace interpolation fuctions. Meanwhile,   and   denote 
 N22  matrices containing N  basis functions J  and I , and u  and v  are the  12 N  

nodal vectors, respectively. 
 

                             
(a)                                                                            (b) 

Fig. 2. (a) Non-convex NEM grid NEM , (b) Laplace interpolation function  xJ  

 
Substituting Eq. (7) into Eq. (6) leads to the simultaneous linear equations in matrix 

form given by 
   FuK                                                    (8) 

Here, the global stiffness matrix  K  and the global load vector  F  are constructed as 

following 
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with the node-wise stiffness matrices and load vectors defined by 
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Here,   xI
I
v supp    indicates the support of I-th CS-FE basis function and E  

indicates the  33  material constant matrix of linear elasticity. It is noted that the 

numerical integration in the natural element method is carried out Delaunay triangle by 
Delaunay triangle. 

The weighting function  xq  specified in Fig. 1(b) should be sufficiently smooth such 

that its differentiation in the interaction integral (5) is integrable. In the current study, 
Laplace interpolation function  xJ  depicted in Fig. 2(b) which is also used for the trial 

function is used. Meanwhile, the crack-tip integral domain A  is chosen by specifying its 
radius intr  as represented in Fig. 3. The value of unity is assigned to all the nodes within 

the circle, while the value of zero is specified to the remaining nodes within a whole 
NEM grid. Then, from the linearity property of Laplace interpolation function (Cho et al., 
2013), a darkened rectangular region has the value of unity and its boundary serves as 
an interior path   shown in the previous Fig. 1(b). Meanwhile, another union of grayed 
Delaunay triangles have the value 10  q  and its boundary becomes the outer path o . 

In other words, the union of grayed Delaunay triangles automatically becomes the 
integral domain A . 
 

 
Fig. 3. The construction of the integral domain A  and the weighting function  xq  

 
Let us denote AM  be the total number of grayed Delaunay triangles within the 

integral domain A , then the interaction integral (5) is integrated triangle by triangle such 
that 
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with  21,
KM  being the triangle-wise interaction integrals. It is because the gradient of 

weighting function jx/q   vanishes outside the integral domain A . Here, each triangle-

wise interaction integral is computed by 
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using the chain rule and Gauss quadrature rule, in which x,INT  and w  indicate the 

total number of integration points, sampling points and weights, respectively. Note that 

the sampling points x  in K  and the Jacobian 
x

J  are calculated using the geometry 

transformation KT  defined by 
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between K  in NEM grid and the master triangle element ̂ . Here,  ii y,x  are the co-

ordinates of three nodes in each Delaunay triangle,   ,  the Gauss points in ̂ , and 

i  the triangular shape functions. 

 
4. NUMERICAL EXPERIMENT 
 

Fig. 4(a) shows a square plate of inL 20  with an angled center crack which is in 

plane stress condition and subjected to a far-field uniform vertical distributed load   

equal to unity. The material properties are as follows: psi.E 71003   and 250. , and 

the crack of length a2  is oriented with an angle   with respect to the negative x axis. 

Unform NEM grid shown in Fig. 4(b) is used and the total number of grid points is taken 
variable for the parametric experiment. According to Yau et al. (1980) and Dolbow and 
Gosz (2002), the stress intensity factors which are analytically expressed in terms of 
the angle   are given by 

 2cosaK I  ,     cossinaK II                          (15) 

with a  being the half crack length. For the convergence experiment with respect to the 

density of uniform NEM grid, the crack angle   is set by o45  and the grid density-

dependent half crack length a  varies from in.3943  to in.6575 as given in Table 2. 

 

                                          
                           (a)                                                                             (b) 
Fig. 4. (a) A square plate with an angled center crack under a uniform tensile 
distributed load, (b) uniform NEM grid. 
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Referring to Table 1, five uniform NEM grids are used and the ratios anal
II K/K  and 

anal
IIII K/K  of stress intensity factor are calculated at two crack tips A  and B . As in the 

previous example, 13 Gauss points are used for both the NEM structural analysis and 
the interaction integral. It is clearly observed from Table 1 and Fig. 5 that the ratios of 
stress intensity factor approach unity as the grid density increases such that the NEM 
grids higher than 3030  provide the stress intensity factors with the maximum relative 

error less than 2.0%. Thus, it has been verified that PG-NE method accurately predicts 
the stress intensity factors of angled crack with the practically reasonable grid density. 
 
Table 1. Variation of stress intensity factors to the grid density 

NEM 
grid 

Half crack 
length  ina  

Total 
number of 

nodes 

anal
II K/K  anal

IIII K/K  

tip A tip B tip A tip B 

5050  3.394 2601 1.0147 0.9909 0.9940 1.0053 
4040  3.536 1681 1.0180 1.0035 0.9907 0.9810 
3030  3.771 961 1.0105 0.9529 1.0268 0.9792 
2020  4.243 441 0.9781 1.0602 1.0553 0.9051 
1010  5.657 121 0.8964 0.8599 0.8435 0.8656 

 

                            
                              (a)                                                                             (b) 

Fig. 5. Stress intensity factors to the total number of nodes: (a) ana
II K/K , (b) ana

IIII K/K  

 
Fig. 6(a) represents the variation of stress intensity factors to the half crack length 

when the crack angle is o45 , where the exact values are calculated using Eq. (15). A 

4040  uniform NEM grid is used based on the previous convergence experiment and 

the stress intensity factors are calculated at crack tip B . It is observed that the stress 
intensity factors IK  and IIK  are in good agreement with the exact values for the 

relative crack lengths of 35400710 .L/a.  . The maximum relative error equal to 5.66% 

with respect to the exact solution is occurred at 2470.L/a  . Thus, it has been justified 

that the present method provides accurate stress intensity factors of center angled 
crack for various crack lengths. Fig. 6(b) represents the comparison of SIF ratios 
between the present method and XFEM by Liu et al. (2004). Since there is difficulty in 
keeping exactly the relative crack length of 0.05 for different crack angles, the SIF 
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ratios are taken for the comparison between two methods. It is observed that the 
present method provides the numerical accuracy similar to XFEM. 
 

              
 (a)                                                                (b) 

Fig. 6. (a) Stress intensity factors to the half crack length, (b) ratios of stress intensity 
factor to the crack angle. 
 
CONCLUSION 
 

Through the numerical experiment with the angled center crack to the grid density, it 
has been confirmed that the SIF ratios approach unity as the grid density increases 
such that the maximum relative error with respect to the exact solution is less than 20% 
when NEM grid is finer than 3030 . Furthermore, it has been observed that the stress 

intensity factors IK  and IIK  at both crack tips are in good agreement with the exact 

values for the relative crack lengths of 35400710 .L/a.  . In addition, it has been 

verified that the numerical accuracy similar to XFEM for a wide range of crack angles. 
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