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Abstract

It is fundamental that the potential faulty sensor be detected, before implementing any
structural health monitoring algorithm, to avoid unreliable health-evaluation result. A
novel sensor fault detection method, based on the extension of traditional principal
component analysis (PCA), is proposed in this paper. It is firstly demonstrated that the
fault detection performance of each loading vector in the PCA transformation matrix is
different from others for a specific sensor fault. A fault sensitive factor is then derived to
quantify the fault detection performances, based on that a weighted fault detection
statistic is built for each specific sensor. The Bayesian inference is combined with the
weighted statistics to form a probabilistic fault detector. Case studies using a benchmark
structure demonstrate that the proposed method is superior to the traditional approach.

Keywords: Weighted principal component analysis; Fault sensitivity; Bayesian
inference; Sensor fault detection; Structural health monitoring.

1. INTRODUCTION

Structural health monitoring (SHM) can be applied to evaluate the health
conditions of in-service civil structures and then help decision-makers confirm a proper
maintainence plan for safe and sustainable operation. However, inaccurate evaluation
results may be reflected by false alarms or missed detections if the monitoring data are
distorted by various sensor faults. It is therefore necessary to detect potential sensor
faults occurred in SHM systems before evaluating the health conditions of monitored
structures (Huang et al. 2015; Huang et al. 2016). The principal component analysis
(PCA)-based fault detection method is perhaps the most popular and broadly studied
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one due to its theoretical simplicity and computational efficiency. Nevertheless, the

potential drawback is that the two traditional fault detection statistics, i.e., the 2T and
squared prediction error (SPE) statistics, of this technique are not sensitive to small or
tiny faults that occur in any measurement variable. This paper presents an innovative
method called weighted principal component analysis (WPCA) to establish a new fault
detection technique that is more sensitive to sensor faults occurred in SHM systems.
The remainder of this article is divided into four primary sections. First, the theoretical
background of the PCA-based fault detection technique is reviewed. Second, a fault
sensitive factor is deduced, through which the weighted fault detection statistic is
established; Bayesian inference theory is employed to combine all the weighted
statistics to decide whether there is a fault. Third, benchmark structure studies are used
to demonstrate the efficacy. Finally, summaries and conclusions are given in detail.

2. Traditional PCA-based Fault Detection Method

The PCA-based fault detection method, which shows potential for SHM applications,
has in recent years been widely studied in the field of industrial process monitoring (Qin

2012). A multidimensional dataset [ ]1 2 N, ,..., m n×= ∈ℜX x x x is defined to represent a

measurement section of the structural response. Assuming that the output of the
monitored system is a zero-mean process, the PCA loading matrix can be obtained from
the eigenvalue decomposition of the covariance matrix of the dataset:

( )T TE= =C XX UΛU (1)

where m m×∈ℜC is the covariance matrix, ( )E  represents the expectation operator,

( )1 2diag , , ..., mλ λ λ=Λ is the diagonal matrix with m eigenvalues of C , and

[ ]1 2, , ..., m=U u u u denotes the PCA loading matrix with iu representing the thi loading

vector. The PCA transformation for a monitoring data x is represented as:
T=t U x (2)

According to the cumulative percent variance criterion (Chiang et al. 2001), defined
as:
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Two statistics, i.e., the 2T statistic and the SPE statistic, can be separately defined
on the principal subspace and the residual subspace for any certain monitoring
data-point x :

( )2 T 1 Tˆ ˆ ˆT −= x U U xΛ (4a)

( )T TSPE = % %x UU x (4b)

where ( )1 2
ˆ diag , ,..., rλ λ λ=Λ is a diagonal matrix that contains the first r eigenvalues. A

fault is judged to occur after one of these two statistics exceeds its corresponding



control limit.

3. Establishment of WPCA-based Fault Detection Method

In the traditional PCA-based fault detection method, the fault is detected either by

the 2T statistic or by the SPE statistic. However, each loading vector has a different
detection performance for different faults. A new statistic that considers the difference in

the fault detection performance should be proposed. The 2T statistic defined in Eq. (4a)
is chosen in this paper and further represented as the following generalized form:

( ) ( ) ( )2 T 1 T T 1 T T 1 T 2

1 1 1
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where 2Ti represents the 2T statistic defined on the thi loading vector:

( )2 T 1 TTi i i iλ−= x u u x (6)

and ic represents a coefficient corresponding to 2Ti :
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The weighting coefficient corresponding to each 2Ti statistic should be determined

according to its fault detection performance. Without a loss of generality, the ability of
the thi loading vector to detect the thj sensor fault is considered. The thj sensor

output after a fault occurs is assumed as the following form:
*

j jδ+x = x ξ (8)

where *x represents the true sensor output value, jδ represents the fault magnitude

that occurred in the thj sensor, and jξ represents the fault-direction vector which is

the thj column of an identity matrix:

According to Eq. (6), the 2Ti statistic after the thj sensor gains a fault can be

written as follows:

( ) ( ) ( )2 *T 1 T * T 1 T 2 T 1 T *T 2i i i i j i i i j j j i i i jλ λ δ λ δ− − −   = + +   x u u x u u u u xξ ξ ξ (9)

Therefore, the 2Ti statistic can be represented as the summation type of two parts:
2 2* 2T T Ti i i= + ∆ (10)

where ( )2* *T 1 T *Ti i i iλ−= x u u x represents the 2Ti statistic of the monitoring data point

without a sensor fault, and ( ) ( )2 T 1 T 2 T 1 T *T 2i j i i i j j j i i i jλ δ λ δ− −   ∆ = +   u u u u xξ ξ ξ represents an

increment of the 2Ti statistic caused by the sensor fault. Increment term 2Ti∆ should

be given more attention because its value actually decides whether a fault can be
detected by the 2Ti statistic.

The relationships T T= =i j j i jiuu uξ ξ and T * *
i it=u x is easy to obtain, where jiu

represents the thj row and thi column element of PCA loading matrix U , and *
it is

the projection of *x onto the thi loading vector. The average increment ( )2E Ti∆ can

further be represented as follows:
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It is easily obtained that ( ) ( )* T *E E 0i it = =u x . Therefore, the expectation of 2Ti∆ can be

written as:

( )
2

2 2E T
ji

i j

i

u
δ

λ

 
∆ =   

 
(12)

A fault-sensitive factor can then be defined as:
2
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When ,j if becomes larger, the fault that occurs in the thj sensor is more easily

detected by the 2Ti statistic.

A weighted summation type determined according to the fault sensitivity is
preferable for detecting a certain sensor fault. The fault sensitive factors can be

assembled into a column vector
T

,1 ,2 ,, ,..., m
j j j j mf f f = ∈ℜ f , and all elements of this vector

can be standardized into the interval [ ]1,1− using the following equation:
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where ,maxjf is the maximum element of jf , ,minjf is the minimum, and ,midjf

represents the middle value of ,maxjf and ,minjf . The Sigmoid function is used to

determine the weighting coefficient:
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where τ represents a variable, and a is a parameter to be confirmed. For the thj

sensor fault, the weighting coefficient corresponding to the thi loading vector is
therefore determined as:
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The generalized 2T statistic, i.e., the WPCA-based fault detection statistic,
corresponding to the thj sensor fault, is then represented as the following equation:
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When a fault occurs in the thj sensor, weighted statistic 2T j
% is more fault sensitive. If

all 2Ti statistics ( 1, 2,...,i m= ) are assembled into a column vector as follows:
T2 2 2

1 2T ,T ,...,Tm
 =  ψ (18)

Eq. (17) is then written as:
2 TTj j=% ψw (19)

where
T

,1 ,2 ,, ,..., m
j j j j mw w w = ∈ℜ w is the weighting vector corresponding to the thj



sensor. And if all weighted 2T j
% statistics ( 1, 2,...,j m= ) are assembled into a column

vector:
T

2 2 2
1 2T ,T ,...,Tm

 =  
% % %Θ (20)

the computational formula of Θ in the matrix production form is then represented as:
TT T T T

1 2, ,..., m
 =  Θ ψ ψ ψ ψw w w = W (21)

where [ ]1 2, ,..., m m
m

×∈ℜW = w w w is the weighting matrix composed of all m weighting

vectors.
To judge expediently whether there is a fault occurred in the sensor network, this

section employs Bayesian inference theory (Bishop 2006) to combine all 2T j
% statistics

in vector Θ into a single fault detection statistic from the probabilistic viewpoint. The
posterior fault probability under 2T j

% is given as:
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According to the law of total probability, the following equation is obtained:

( ) ( ) ( ) ( ) ( )2 2 2T T N N T F Fj j jP P P P P= +% % % (23)

where symbols N and F , respectively, represent the normal and fault conditions of the
sensor network. If the significance level is α , the prior probability of the normal and
fault conditions of the sensor network is determined as: ( )N 1P α= − and ( )FP α= . The

conditional probability of 2T j
% under the normal or fault condition can be defined as

follows:
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where 2
,limT j

% is the control limit of the 2T j
% statistic, and v is a turning parameter that is

generally set to 1.
Therefore, the posterior fault probability under all elements of Θ is given; i.e., the

fault detection statistic based on Bayesian inference theory can be synthetically defined
as the following weighted form:
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When the posterior fault probability ( )FP Θ exceeds the original fault probability level of

the sensor network, i.e., α , a fault can be judged to occur in the sensor network.

3. Case Study

To evaluate the efficacy of the proposed sensor fault detection method, a



benchmark problem for SHM (Caicedo et al. 2004) is chosen in this section. The
benchmark structure was established by the IASC-ASCE Structural Health Monitoring
Task Group to enable researchers worldwide to compare the efficiencies of various SHM
algorithms. The benchmark model has been created as a MATLAB software through
which the structural response data could be obtained. There are 16 accelerometers
installed to the benchmark structure to measure the acceleration responses. There are
generally two types of sensor fault modes, i.e., the bias and gain, which are the typical
modes of the additive and multiplicative sensor faults according to Abdelghani and
Friswell (2004; 2007). Both of these sensor fault modes were simulated.

Table 1 AUC values of the three statistics for the bias fault

Sensor #
AUC values

2T SPE ( )FP Θ

3 0.5000 0.6328 0.9843
4 0.5001 0.6064 0.9778
7 0.5000 0.6438 0.9893
8 0.5000 0.6338 0.9835

There are 4 sensors, i.e., sensors 3, 4, 7 and 8, to be studied in this section. The
bias fault type is simulated for demonstration. The ROC curve technique (Lu et al. 2009)
is used to evaluate the fault detection performances of the three statistics. To quantify
the fault detection performance of a statistic, the area under ROC curve (AUC) value is
always employed. When the AUC value is equal to 0.5, the fault detection performance
of the statistic gets worst; when the AUC value is equal to 1.0, the fault detection
performance of the statistic gets best. Table 1 shows the AUC values of the three
statistics for the bias fault, which indicate that the fault detection performance of the new
proposed fault detection statistic is preferable to the traditional statistics.

The gain fault type is simulated to demonstrate the efficacy. Table 2 shows the AUC
values of the three statistics for the gain fault. It is concluded that the fault detection
performance of the new proposed statistic is preferable to that of the traditional ones.

Table 2 AUC values of the three statistics for the gain fault

Sensor #
AUC values

2T SPE ( )FP Θ

3 0.5058 0.6319 0.8248
4 0.5154 0.6053 0.8170
7 0.5082 0.6373 0.8376
8 0.5013 0.6379 0.8231

4. Conclusions

It is fundamental to detect various types of sensor faults before applying any SHM
algorithm to assess the current health conditions of monitored structures. This paper
proposed an innovative sensor fault diagnosis method to improve the traditional
PCA-based approach with an application to SHM. The fault sensitivity of the statistic
corresponding to each loading vector of PCA remained different for a specific sensor



fault. A weighted summation type according to the fault sensitivity of each loading vector
is preferable for detecting the specific sensor fault. To quantify the fault sensitivity, a fault
sensitive factor was deduced from the statistical perspective, and a weighted fault
detection statistic was then established. Bayesian inference theory was applied to
integrate all weighted statistics corresponding to each sensor to form a probabilistic fault
detector. Case study employing benchmark structure was considered and the bias or
gain fault type were carried out in this research. The comparison results utilizing the
ROC curve technique showed that the fault detection performance of the new proposed
statistic was the best.
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