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ABSTRACT

System identification and damage detection for structural health monitoring have
received considerable attention. Time domain analysis methodologies based on
measured vibration data, such as the recursive least-squares estimation or parametric
Kalman filter, have been studied and shown to be useful. However, the traditional
parametric Kalman filter approach requires that all the external excitation (input) data
be available. On the other hand, structural uncertainties are inevitable for civil
infrastructures, it is necessary to develop approaches for probabilistic damage
detection of structures with uncertainties. In this paper, a parametric Kalman filter with
unknown inputs is proposed for the simultaneous identification of structural parameters
and the unmeasured external inputs. Analytical recursive solutions for the proposed
parametric Kalman filter with unknown inputs are derived based on the traditional
parametric Kalman filter approach. Then, it is used for probabilistic damage detection of
structures by considering the uncertainties of structural parameters. The damage index
and the damage probability are derived from the statistical values of the identified
structural parameters of intact and damaged structure. Some numerical examples are
used for validating the proposed approach.

1. INTRODUCTION

One of the important tasks of structural health monitoring (SHM) is to identify the
state of the structures and to detect structural damage for the reliability and safety of
structures. An early detection of local damages in structures will be really important for
evaluating the reliability and safety of structures. Therefore, based on measured
vibration data, the detection of structural damage has been received considerable
attention recently. When a structure is damaged, such as cracking in a certain
structural element, the stiffness of the damaged component will be reduced. So, the
variations of structural parameters could indicate the structural damage. Hence,
identifications of structural parameters and the tracking of their variations due to
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damages are important objectives of structural health monitoring (Yang et al.2007).

Literature reviews on system identification and damage detection have been
available (Zhong et al.2003, Jiang et al.2011 ). Various approaches in time domain
analyses have been developed, such as the methods of least-squares estimation
(Yang et al.2004,2005), sequential nonlinear least-squares estimation (Yang et
al.2006a), the extended Kalman filter (Yang et al.2006b), the finite element model
updating and structural damage identification based on OMAX data (operational modal
analysis) with eXogenous forces (Reynders et al.2010), response surface metamodels
for structural damage identification (Rutherforda et al. 2005 and Fang et al.2011), a
two-stage Kalman estimation approach for the identification of nonlinear structural
parameters (Lei et al. 2011). However, these approaches above are only applicable
when the information of external excitations to structures is available. In practice, it is
difficult or even impossible to directly measure all external excitations on the structures,
especially dynamic load. The information of external excitation is important in SHM. So,
it is necessary to develop the algorithms for the structural damage detection with
unknown external excitations.

There have been some approaches proposed for simultaneous identification of
structural damage and unknown external excitations in the last two decades, e.g,
numerical iterative procedures based on the classical least squares estimation or
extended Kalman filter for identification of the constant structural parameters (Haldar et
al. 1994,1997,2004 ), the recursive least squares estimation with unknown inputs
(RLSE-UI) approach for damage identification of structures (Yang et al.2007) However,
the derivations of these approaches are quite involved, e.g., the mathematical
derivations of the refereed RLSE-UI by Yang et al (2007) were presented in both the
paper txt and the Appendix with many page spaces. But the final recursive estimation
expressions are analogous to those of the parameter Kalman filter (PKF), which implies
the direct extension of PKF for simultaneous identification of structural damage and
unknown external excitations.

Detection of structural damage in civil engineering involves a large number of
uncertainties which result from environment measurement noise, modeling error, and
uncertainties in structures. These errors and uncertainties can result in mistake or low
accuracy in damage detection. So, the uncertainties in structures limit the successful
use of those deterministic damage detection methods. Some approaches with
consideration of the uncertainties have been developed for structural damage detection.
However, it is necessary to develop the algorithms with consideration of the
uncertainties in structures for the structural damage detection with unknown external
excitations.

In this paper, a parametric Kalman Filter with unknown input (PKF-UI) for
probabilistic damage detection of structures with uncertainties under unknown input is
investigated. The approach is a direct extension of the conventional parametric Kalman
Filter. Finally, some numerical examples are used to demonstrate and validate the
performances of proposed PKF-UI for simultaneous identification of uncertain structural
damage and unknown external excitations, respectively.



2. THE Parametric Kalman Filter with unknown Input (PKF-UI)

When external inputs to a structure are unknown, the equation of motion can be
written by

[ ](t) (t), (t) (t)u u+ , =&& & ηMx F x x θ f (1)

where x&& x& and x are vectors of structural acceleration, velocity and displacement
respectively, θ is a m-dimensional time-invariant parametric vector involving unknown
parameters to be estimated, including stiffness, damping, and nonlinear

parameters, [ ](t), (t),F x x θ& is a force vector which can be linear or nonlinear function of

the displacements, velocities and the structural parameters, (t)uf is an unmeasured p-

dimensional external excitations vector, and uη is the corresponding influence matrix

associated with the unknown external excitations (t)uf .

When all structural responses are observed, the observation equation associated
with the equation of motion in Eq.(1) can be expressed as

[ ](t) (t), (t) + (t) + (t)u u&ϕ θ η υy = x x f (2)

in which (t) = (t) (t)u u &&y f - Mxη , ϕ [ ] is the observation matrix composed of the system

response vectors, and (t)υ is a measurement noise vector, which is assumed a

Gaussian white noise vector with zero mean and a covariance matrix R(t).

The discrete equation for the observation equation in Eq.(2) is expressed as

k+1 k+1 1 1+ u u
k k+ += +ϕ θ η υy f (3)

For a structure with time-invariant parameters, it is know that

&θ = 0 (4)

Based on Eqs.(3) - (4), the structural unknown parametric vector θ can be
recursively estimated by the conventional KF as follows,

1| 1 | 1 1 1 | 1| 1
ˆ ˆ ˆ ˆ( )u u
k k k k k k k k k k k+ + + + + + += + − −θ θ ϕ θ ηK y f (5)

where |
ˆ

k kθ denotes the estimated parametric vector at time t k t= ∆ , 1| 1
ˆ

+ +k kθ and

1| 1f̂ + +
u

k k denotes the estimated values of estimated parametric vector θ and unknown

external excitations vector (t)f u at time +1)t k t= ( ∆ .
1k +K is the Kalman gain matrix

at time +1)t k t= ( ∆ .



Under the condition that the number of response measurements (sensors) is not

less than the number of unknown external excitations, 1 1
ˆ u
k+ |k+f can be estimated by

minimizing the following error vector as,

1 1 k+1 1| 1 1| 1
ˆ ˆu u

k+ k+ k k k k= + + + +− −∆ ϕ θ ηy f (6)

By inserting the expression of 1| 1
ˆ
k k+ +θ in Eq.(5) into the above error vector in

Eq.(6),
1k +∆ can be rewritten by

( )( ) ( )1 k+1 +1 +1 k+1 | k+1 +1 1 1
ˆ ˆu u

k+ l k k k k l k k+ |k+= − − − −I I∆ ϕ ϕ θ ϕ ηK y K f (7)

Then, 1 1
ˆ u
k+ |k+f can be estimated from above Eq.(7) by least-squares estimation as

( )( )
+1

1
1| 1 1 k +1 +1 +1 k+1 |

ˆ ˆ=
k

u uT
k k k l k k k k

−
+ + + − −η ϕ ϕ θf S R I K Y (8)

where ( )
+1

1
1

1 k+1 +1k

uT u
k l k

−
−

+
 = − η ϕ ηS R I K

By inserting Eq.(3) into Eq.(8), the error of the estimated 1 1
ˆ u
k+ |k+f is given by

( ) ( )
1| 1 +1

1
1 1| 1 +1 k+1 +1 k+1 | 1

ˆˆ ˆ= = +
k k k

u u uT
k k k k l k k k k+ +

−
+ + + +− −fe f f S R I K e vθη ϕ ϕ (9)

in which | |
ˆˆ

k k k k= −eθ θ θ

Based on Eq.(3) and Eq.(5), it is known that the error 1| 1k̂ k+ +eθ
can be estimated by

1| 11| 1 1| 1 | 1 k+1 | 1
ˆˆ ˆ ˆ ˆ= + +

k k

u
k k k k k k k k k k+ ++ + + + + +− − （ ）θ θ θθ θ ϕ η fe = e K e e v (10)

By inserting
1| 1

ˆ
k k+ +

fe in Eq.(9) into 1| 1k̂ k+ +eθ
in Eq.(10) , 1| 1k̂ k+ +eθ

can be expressed by:

( )( ) ( )
1 1

1 1
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Then, the covariance matrix 1| 1
ˆ
k k+ +Pθ is derived by

( ) ( ) ( ) ( )

( ) ( )
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To minimize the error covariance matrix 1| 1
ˆ
k k+ +Pθ , Kalman gain matrix

1k +K should be

selected as

| 1|

T T 1
1 1 k+1 1 1

ˆ ˆ( )
k k k kk k k k+

−
+ + + += +P PK Rθ θϕ ϕ ϕ (13)

Therefore, the estimation of 1| 1
ˆ
k k+ +Pθ in Eq.(12) can be simplified as：

( )( )
1

1
1| 1 1 1 k+1 +1 k+1 |

ˆ ˆ=
k

u uT
k k l k k k k k+

−
+ + + ++ −θ θη η ϕ ϕP I K S R I K P (14)

In summary, the derivation of the proposed parametric KF-UI is completely based
on the classical KF and the recursive procedures of the proposed parametric KF-UI
are analogous to those of the classical KF described in the above section. Therefore,
the proposed PKF-UI is a direct extension of the classical KF, which simplifies the
complex derivations in previous Least-Squares Estimation with Unknown Excitations
(Yang et al. 2007).

3. DAMAGE IDENTIFICATION OF UNCERTAIN STRUCTURES BASED ON PKF-UI

Structural damage detection in civil engineering involves a large number of
uncertainties which result in the uncertainties of the estimation. Hence, the identified

structural parametric vector Ω and the unknown external excitations uf are

uncertain based on the proposed PKF-UI.

( )( )
+1

u u 1 u u u u
1| 1 1 k +1 +1 +1 k +1 |

ˆ ˆ( )= ( ) ( ) ( ) ( ) ( )
k

u uT
k k k l k k k kθ θ θ θ θ θ−

+ + + − −f S R I K Yη ϕ ϕ θ (15)

u u u u u u
1| 1 | 1 1 1 | 1| 1

ˆˆ ˆ ˆ( ) ( ) ( )( ( ) ( ) ( ))u u
k k k k k k k k k k kθ θ θ θ θ θ+ + + + + + += + − −K y fϕ ηΩ Ω Ω (16)

The probability distribution of uncertain structural parameters could be obtained

when the information of these parameters are sufficient. So, at time t t= ∆k , Ω and
uf can be expanded at corresponding mean value uθ of uncertain parameters uθ by

Taylor series expansion to the first order as,

( ) ( ) | ( )u u

u
u u u u u uk

k k u

∂
≈ + −

∂ =

f
f f

θ θ
θ θ θ θ

θ
(17)

( ) ( ) | ( )
=

∂Ω
Ω ≈ Ω + −

∂
u u

u u u uk
u θ θ

θ θ θ θ
θ

(18)



where ( )u u
kf θ and ( )Ω u

k θ are the structural identified parametric vector and the

unknown external excitations at u u=θ θ , which can be obtained by PKF-UI.

| u u

u
k
u

∂

∂ =

f
θ θθ

and |
=

∂Ω

∂
u u

k
u θ θθ

are the sensitivity matrix of uncertain structural parameters of

uf and Ω at time t t= ∆k .

Hence, Probability density functions of Ω can be achieved when probability
distribution of uncertain parameters uθ is known.

When confidence level of the structural identified parametric vector * )u
i θΩ ( in

undamaged model is 1 i−α

*( ) 1 iprob L α≤ < ∞ = −Ω (19)

where L is Lower bounds of confidence intervals.

Probability of damage is defined by

PDE ( )dprob L= −∞ < ≤Ω (20)

where dΩ is the structural identified parametric vector in damaged model.

The degree of damage is defined by

*

*
100%

d−
×

Ω Ω

Ω
(21)

4 NUMERICAL EXAMPLES

A 10-story shear building is used as an numerical example. Parameters of the

building are assumed as: floor mass im=[67.955 , 65.485 , 63.079 , 62.591 , 61.918 , 60.485 ,

59.922 , 58.418 , 57.484 , 56.837] kg ; floor original stiffness ki =[2.713 , 2.685 , 2.657 , 2.648 ,

2.639 , 2.629 , 2.604 , 2.589 , 2.576 , 2.558] 105 N/m ( i =1,2,…,10);

An input of ground excitation in K-T spectrum is unknown. All the velocity and
displacement and 5% noisy acceleration measurements at every story are used in the

proposed PKF-UI. Density 2
0( , )Nρ ρ σ , 3

0 7850 /kg mρ = ,
00.01σ ρ= .Rayleigh

damping α β= +C M K , where α and β are unknown.

In the damage pattern A, the stiffness of the third floor reduces 10% decrease. In
the damage pattern B, the stiffness of the 4th floor reduces 10% decrease and the 7th
floor reduces 15% decrease. Unknown parametric vector to be identified is



=θ { }1 2 1 2, , , , , , , ,
T

n nk k k k k kβ β β α… K ,( n =10).The unknown input of ground excitation in

K-T spectrum will also be estimated.

The undamaged and damaged parameters, identified damage degree and damage
probability of each story for pattern A and pattern B are listed in Table 1 and Table 2.

Table 1. Undamaged and damaged structural parameters and damage probability
of each story for pattern A

Story
No.

Undamaged
Stiffness
(N/m)

Identified
undamaged
stiffness
(N/m)

Error

（%）

Damaged
Stiffness
(N/m)

Identified
damaged
stiffness
(N/m)

Error(%)

Identified
damage
degree
(%)

PDE
(%)

1 271300 271307 0.003 271300 271191 -0.040 -0.04 5.14

2 268500 268502 0.001 268500 268396 -0.039 -0.04 5.13

3 265700 265722 0.008 239130 239043 -0.036 -10.04 97.09

4 264800 264806 0.002 264800 264695 -0.040 -0.04 5.14

5 263900 263897 -0.001 263900 263825 -0.028 -0.03 5.09

6 262900 262930 0.011 262900 262812 -0.033 -0.04 5.15

7 260400 260434 0.013 260400 260307 -0.036 -0.05 5.16

8 258900 258810 -0.035 258900 258803 -0.038 0.00 5.01

9 257600 257508 -0.036 257600 257411 -0.073 -0.04 5.12

10 255800 255665 -0.053 255800 255525 -0.107 -0.05 5.18

Table 2. Undamaged and damaged structural parameters and damage probability
of each story for pattern B

Story
No.

Undamaged
Stiffness
(N/m)

Identified
undamaged
stiffness
(N/m)

Error

（%）

Damaged
Stiffness
(N/m)

Identified
damaged
stiffness
(N/m)

Error(%)

Identified
damage
degree
(%)

PDE
(%)

1 271300 271307 0.003 271300 271214 -0.032 -0.03 5.12

2 268500 268502 0.001 268500 268417 -0.031 -0.03 5.11

3 265700 265722 0.008 265700 265623 -0.029 -0.04 5.13

4 264800 264806 0.002 238320 238240 -0.034 -10.03 97.07

5 263900 263897 -0.001 263900 263843 -0.021 -0.02 5.07

6 262900 262930 0.011 262900 262828 -0.027 -0.04 5.13

7 260400 260434 0.013 221340 221275 -0.029 -15.04 100.00

8 258900 258810 -0.035 258900 258829 -0.027 0.01 4.98

9 257600 257508 -0.036 257600 257450 -0.058 -0.02 5.08

10 255800 255665 -0.053 255800 255587 -0.083 -0.03 5.10

Figs. 1-2 show damage probability of each story for pattern A and pattern B.
Figs.3-4 show probability density functions of the 1st and 3rd story for pattern A and
pattern B. Fig. 5 shows the comparison of identified mean value of ground acceleration
with the actual value.
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Fig.1: Damage probability of each story for
pattern A

Fig.2: Damage probability of each story for
pattern B
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Fig.3: Probability density functions of each story for pattern A
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Fig.4: Probability density functions of each story for pattern B
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5. CONCLUSIONS

The conventional parametric Kalman filter (PKF) is only applicable when the
information of external excitations to structures is available. Some improved
methodologies have been proposed. However, the derivations of these approaches are
quite involved. On the other hand, structural uncertainties are inevitable for civil
infrastructures, it is necessary to develop approaches for probabilistic damage
detection of structures. In this paper, a parametric Kalman filter with unknown inputs is
proposed for the simultaneous identification of structural parameters and the unknown
external inputs based on the conventional PKF. Then, it is used for probabilistic
damage detection of structures by considering the uncertainties of structural
parameters. The damage index and the damage probability are derived from the
statistical values of the identified structural parameters of intact and damaged structure.
Finally, some numerical examples are used for validating the proposed method.
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