
On Pedestrian’s Walking Load Identification

*Ming Wang1) and Jun Chen2)

1), 2)
Department of Structural Engineering, Tongji University, Shanghai, China

1)
1431980wangming@tongji.edu.cn

ABSTRACT

Pedestrian’s walking loads may induce severe vibrations to structures like
footbridges, long-span floors and corridors leading to the so-called structural vibration
serviceability issues. When designing structures subjected to pedestrian loads，
reliable walking load model is crucial for accurate prediction of structural responses.
However, it is not an easy task to measure the walking load directly. Inspired by the
method for identifying moving load, the paper suggests an approach to identify
pedestrian’s walking load using structural responses. The method is based on modal
superposition principle. With assumed modal shape functions for the line-like structure,
analytical solution of the structural response due to pedestrian was derived and
identification function was then established. In general, the identification matrix is ill-
conditioned and the identification results are sensitive to measurement noise. To tackle
this problem, the general regularization method is adopted. For the scenario of crowd
moving load, it was simplified as a concentrated load or a moving load for identification
purpose. Numerical examples show that accurate loads can be obtained by the
suggested method for noise-free measurement. For noise-polluted case, the
identification accuracy of walking load is acceptable for low noise level.

1. INTRODUCTION

Currently moving load identification is mainly focused on vehicle loading, for
human-induced excitations acted on the footbridge or long-span floors have not been
studied from the perspective of load identification. With the development of social
economy, new structure form and high-strength lightweight materials have been widely
used in public buildings, causing structural natural frequencies to be lower and lower.
These structures are prone to vibrations under human-induced excitation, so the
structural response under pedestrian’s walking loads can’t be ignored, especially for
footbridges in urban or tourism area. Accurate estimate of pedestrian’s walking load is
very important for the structural design, control and vibration serviceability assessment.
However, it is not an easy task to measure the walking load directly. Inspired by the
method for identifying moving load, this paper suggests an approach to identify
pedestrian’s walking load using structural responses.
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In this paper, an attempt is made for pedestrian
basis of modal superposition
line-like structure (Law 1997
pedestrian was derived and
examples are given to show the appl

2. THEORY OF WALKING LOAD IDENTIFICATION

Suppose one person walking on a simply supported beam at a constant speed, as
shown in Fig.1. The beam is assumed to be of constant cross
mass per unit length, having linear, viscous proportional damping with small deflections,
and the effects of shear deformation and rotary inertia are not

Fig.1 Simply supported beam subjected to pedestrian’s walking load

The equation of motion can be written as
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where u(x,t) is the beam deflection at point
is the viscous damping parameter,
second moment of inertia of the
the time varying load point, f(t)
and δ(t) is the Dirac delta function.

Based on modal superposition, the dynamic deflection
follows:

where n is the mode number,
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is the beam deflection at point x and time t, ρ is the mass per unit length,
is the viscous damping parameter, E is the Young’s modulus of the material,
second moment of inertia of the beam cross-section, l is the length of the beam,

f(t) is the time varying walking load, c is the walking speed,
is the Dirac delta function.

Based on modal superposition, the dynamic deflection u(x,t) can be
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is the mode number, Фn(x) is the mode shape function of the
th mode amplitudes. Substituting Eq. (2) into Eq. (1), we obtain
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where wn is the modal frequency of the nth mode, ξn is the damping ratio of the nth
mode, and Mn is the modal mass of the nth mode, and pn(t) is the modal fore. Based on
assumptions for the beam, the modal parameters of the beam can be calculated as
follows:

2( / ) / ,nw n l EIπ ρ= ( ) sin( / )n x n x lπΦ = (4)

/ 2,nM lρ= ( ) ( )sin( ( ) / )np t f t n a t lπ= (5)

For real structures, the modal parameters can be obtained from the finite element
model or modal testing.

Eq. (3) can be solved in the time domain:
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Substituting Eq. (4) and Eq. (6) into Eq. (2), the dynamic deflection of the beam at
point x and time t can be obtained (Chan 1999).
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Eq. (8) can be rewritten in discrete terms as
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where t∆ is the sampling interval and Nt+1 is the number of sample points.
The response of mode n is
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Arranging Eq. (10) into matrix form,
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Assuming the initial condition as
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Eq. (14) can be condensed as

(2) (1) (1) 0 0 0

(3) (2) (1) (1) (2) 0 0

(4) (3) (1) (2) (2) (1) (3) 0

(5) (4) (1) (3) (2) (2) (3) 0

( ) ( 1) (1) ( 2) (2) ( 3) (3) (

n n

n n n n

n n n n n n

xn

n n n n n n

t n t n n t n n t n n tn

u H S

u H S H S

u H S H S H S
D

u H S H S H S

u N H N S H N S H N S H N

 
 
 
  

= 
 
 
 

− − −  

L

L

L

L

M M M M O M

L

(1)

(2)

(3)

(4)

1) ( 1) ( 1)B n B B

f

f

f

f

N S N f N

  
  
  
    
  
  
  
  

− + − −    



M

(16)

Eq. (16) is simply rewritten as

( 1) ( 1)( 1) 1 ( 1) 1t Bt B
N NN N

u B f
− × −− × − ×

= (17)

3. REGULARIZATION

The natural frequencies and mode shapes obtained from modal testing and modal
analysis are subject to measurement error. Noise contamination in the test data has
adverse effect on the accuracy of the identified walking load. In general, the walking
load can be identified from Eq. (16) by the least-squares method, but the result would
be unbound. A regularization technique can be used to solve the ill-conditioned
problem in the form of minimizing the function parameter (Y. Xiao 2013). The
generalized cross-validation and L-curve method are employed to determine the
optimal regularization parameter (Zhu 2002).
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where λ is the non-negative regularization parameter



4. SIMULATION AND RESULTS

To check the correctness and effectiveness of this method, there is a simply
supported beam subject to walking load. The parameters of the beam are as followed:
EI=1×109(N*m2), ρ=600kg/m, l=20m, ξ=0.02, N=3, human walking speed v=1.5m/s, step
length Δl=0.75m, and suppose that the first step is 0.5m from the left support.
Nt=NB=1300, and the responses of 0.25*l, 0.45*l and 0.8*l are used in the identification.
(G. Ding 2016) studied the single step walking load, so this paper assumes that each
step load is the same and adopts one of the cases.
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Fig.2 Single step load of walking

Fig.3 Simulated time varying walking load f(t)
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Fig.4 The displacement of 0.25*l (Ep=0)

Fig. 5 The displacement of 0.45*l (Ep=0)

Besides, white noise is added to the calculated responses to simulate the polluted
measurements.

calculated p calculated oiseu u E u N= + × × (20)

where Ep is a specified error level, Noise is a standard normal distribution vector. The
estimation error can be calculated by the followed equation:

100%
identified true

true

f f
Error

f

−
= × (21)

Eq. (18) and Eq.(19) are used to identify the walking load and the following results
are obtained for different cases.

(1) If Ep=0, it means no noises are added to the measured displacements (Fig.4 and
Fig. 5), accurate results are obtained. This confirms that using displacements to identify
the walking load is feasible.
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(2) If Ep=1%, the simulation of the displacements are showed in the Fig.6 and Fig.7,
and the walking load can be identified as Fig.8 , Error=10.6%.

Fig.6 The displacement of 0.25*l with 1% noise

Fig.7 The displacement of 0.45*l with 1% noise

Fig.8 The identified load form polluted displacement (Ep=0.01)
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5. CONCLUSIONS

From theoretical studies and computation simulation, some conclusions can be
obtained. First it is feasible to use measured responses such as displacement to
identify pedestrian’s walking load in the time domain. Although the identification matrix
is ill-conditioned, the general regularization method is a good solution to this problem.
When measured responses are polluted, the identified result is satisfied by
preprocessing the data and least square method.
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