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ABSTRACT

Due to the multi-load effects, strain/stress response data acquired by structural

health monitoring (SHM) system instrumented on a large-scale bridge often exhibits

multimodality which cannot be adequately modelled by any standard unimodal

probability distribution. This paper presents a finite mixture distribution model in the

context of Bayesian inference, which is powerful for fitting the measured data with a

heterogeneous population. Bayesian modelling approach rather than classical approach

is developed for probabilistic parameter estimation of the mixture distribution model in

viewing its capability of providing associated uncertainties of the estimates and handling

the outlier data as well. The Markov chain Monte Carlo (MCMC) method is applied to

evaluate the posterior densities. Synthetic data sets with multimodality are first used to

verify the applicability and robustness of the Bayesian mixture distribution model. Later

in the case study, the proposed method is applied to model the in-service stress

response data of Tsing Ma Bridge under multi-load conditions.

Keywords: Bridge; SHM data; Strain/stress distribution; Multimodality; Bayesian

mixture distribution model; MCMC method

1 INTRODUCTION

Application of long-term structural health monitoring (SHM) systems to large-scale

bridges has attracted plenty of attention in the past decade (Ko & Ni, 2005; Brownjohn,

2007; Ni et al., 2011a). Through providing precise and real-time information about the

structure and its environment, SHM system is aiming at assessing the structural

condition with the help of data-driven diagnostic and prognostic tools. Extracting

inherent features from comprehensive monitoring data would be the key work for the

structural health and condition assessment while a variety of extraordinary stochastic

phenomena exist which make a simply structured probability model inappropriate and
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unsatisfactory to catch the features. For example, it has been observed that the

in-service stress response data acquired from hybrid bridges under the combination of

highway, railway and wind loads exhibit multiple engendering effects, resulting in a

heterogeneous data structure such that a standard distribution model is inadequate to

characterize their statistical nature (Ni et al., 2011b; 2011c).

Among the existing statistical tools, the finite mixture model is a versatile and

flexible method with which complex random phenomena can be favorably captured. It

plays an important role in the inference of descriptive distribution models (McLachlan &

Peel, 2004). Recently, the mixture model has been used in damage detection of aircraft

wings (Qiu et al., 2014). Bayesian approach for parameter estimation of the mixture

model has been addressed in the field of statistics (Diebolt & Robert, 1994; Lavine &

West, 1992; Richardson & Green, 1997). Because of providing not only point estimators

but also associated posterior distributions, Bayesian inference can better handle the

inherent uncertainties of the model parameters. In this study, Bayesian approach for

finite Gaussian mixture modelling of the probability distribution of heterogeneous

strain/stress response data will be developed, along with the illustration of the proposed

method with the use of real-world monitoring data acquired from an instrumented

bridge.

2 BAYESIAN INFERENCE FOR GAUSSIAN MIXTURE MODEL

2.1 Finite Gaussian mixture model

The finite Gaussian mixture model can be expressed as
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1( , , )Jω ω=Ω L denotes a vector of mixing proportions or weights for J components
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Thus iZ follows a multinomial distribution:
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1~ (1, ) ( , , )i JMN ω ω=Z Ω Ω L (3)

By including the component indicator vector iZ as unknown parameters, the overall

unknown parameters to be estimated in the Gaussian mixture model are

2 2
1 1 1 1{ , , } { , , , , , , , , }; { , , }J J J nµ µ σ σ ω ω= = =θ μ Σ Ω Z Z ZL L L L (4)

2.2 Prior selection
Bayes estimators for a finite mixture model can be well defined when the prior

distributions are properly selected (McLachlan & Peel, 2004). In this study, we use

conjugate priors for the parameters μ , Σ , Ω in the Gaussian mixture model.
2( , )j jµ σ

are assumed to be mutually independent over the components.
Normal-inverse-chi-squared prior is commonly used for the case that both mean and
variance are unknown. A convenient parameterization is given as (Diebolt & Robert,
1994; Gelman et al., 2014)

2 2~ ( , )j j jInvC sσ ν (5)

2 2~ ( , )j j j j jNµ σ ξ σ κ (6)

InvC denotes the scaled inverse Chi-squared distribution, in which jν and js are

degree of freedom and scale for jσ , respectively. The conditional conjugate prior for

jµ is the normal distribution with mean jξ and variance
2
j jσ κ .

The prior distribution of 1( , , )Jω ω=Ω L is assumed to be independent of jµ and

2
jσ . A conjugate prior for Ω is the Dirichlet distribution (McLachlan & Peel, 2004)

1~ ( , , )JD α αΩ L (7)

The relative sizes of the Dirichlet parameters jα ’s describe the mean of the prior

distribution of Ω , and the sum of jα ’s is a measure of the strength of the prior

distribution.

2.3 Posterior simulation using Gibbs sampler

Markov chain Monte Carlo (MCMC) algorithms can be used for posterior

simulation and approximation when the joint posterior distributions have no analytical

expression. Gibbs sampler is one of the frequently used MCMC algorithms and it is

adopted here in the mixture model to estimate the unknown parameters.

Given the component indicator vector iZ , the conditional posterior distribution of
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2
jσ is a Gaussian distribution in the following expression
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jy denotes the observations belonging to the j th component given iZ while jn is

the number of observations. jy is the sample mean of jy . The marginal posterior

distribution for
2
jσ is the scaled Inverse Chi-squared distribution:
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*
jν ,

2*
js ,

*
jξ and

*
jκ are the parameters of posterior distributions. From the algebraic

forms of these parameters we can see that they are the combination of prior information
and the information contained in the observations. The posterior distribution of the
mixing proportion vector 1( , , )Jω ω=Ω L is the Dirichlet distribution:

1 1~ ( , , )i J JD n nα α+ +ΩZ L (10)

Now we focus on the posterior distribution of the component indicator vector iZ given

the model parameters θ . From Eq. (3) we find that the posterior iZ relies on the

posterior Ω which is denoted as iτ here. For the i th observation iy , we have
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in which jτ means the posterior probability that observation iy belongs to the j th

component with iy having been observed on it.

From Eqs. (8), (9), (10) and (11), we can summarize the procedures of Gibbs

sampler for the Gaussian mixture model as illustrated in Fig. 1. Repeating the process,

say 1, ,m M= L , Gibbs sampler is run by simulating successively from the conditional

distributions and replacing the conditioning parameters. After discarding a number of



burn-in iterations, the generated random samples can be regarded as samples from the

joint posterior distribution.

Fig. 1 Flowchart of Gibbs sampler for Gaussian mixture model

3 NUMERICAL EXAMPLES

The proposed algorithm is used to estimate the model parameters of a set of
artificial samples, where the relative error between the estimators and true value can be
obtained to evaluate the accuracy. We now consider a two-component Gaussian
mixture model. Vague and diffuse prior specifications are preferred so that the
estimation will be majorly influenced by the observed data. Herein, we set 2jν = ,

2 var( )j js y ν= × , mean( )j yξ = , 1jτ = and 5jα = for 1,2j = . Three cases are

considered to evaluate the effectiveness of the Bayesian approach.
In Case 1, we consider the influence of different component means on the relative

error of estimators, where all the parameters are assumed to be fixed except the 2nd

component mean which is vary from 1.0 to 8.0 with the step of 1.0, namely Cases 1-1 to

1-8. In Case 2, the influence of different component variances on the relative error of

estimators is considered, where the 2nd component variance is assumed to change

from 1.0 to 6.0 with the step of 1.0 while the other parameters remain fixed (Cases 2-1

to 2-6). In Case 3, the influence of different weights assigned to each component on the

relative error of estimators is further studied, where the 2nd component weight is

assumed to change from 0.1 to 0.5 with the step of 0.1 while the 1st component weight

from 0.9 to 0.5 respectively and the other parameters remain fixed (Cases 3-1 to 3-5).

Sampling model parameters
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The parameter configurations for all cases are illustrated in Tab. 1.

Tab. 1 Given parameter configurations

Case No. Comp. No. µ 2σ ω

1
1 1.0 1.0 0.5

2 1.0 to 8.0* 1.0 0.5

2
1 1.0 1.0 0.5

2 5.0 1.0 to 6.0** 0.5

3
1 1.0 1.0 0.9 to 0.5

2 5.0 1.0 0.1 to 0.5***

Note: *Cases 1-1 to 1-8; **Cases 2-1 to 2-6; ***Cases 3-1 to 3-5

Fig. 2 Simulated random samples: a) Case 1-2; b) Case 1-5; c) Case 2-6; d) Case 3-1

For each case described in Tab. 1, 1000 random samples are generated as shown

in Fig. 2, from which the number of Gibbs iterations and burn-in period are determined

by visual inspection. The iteration paths as shown in Fig. 3 indicate that 10000 iterations

and 2000 discards are sufficient for all cases. The estimation results of the model

parameters are obtained as listed in Tab. 2. The relative errors in all cases are

calculated and provided in Fig. 4.
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Fig. 3 Iteration paths for Case 1-5: a) iterations of component means; b) iterations of

component variance; c) iterations of component weights; d) estimated PDF

Tab. 2 Estimation of parameters

Case Comp. No. µ 2σ ω

1-3
1 1.4276 1.1572 0.4992

2 2.5693 1.1323 0.5008

1-5
1 1.0486 1.0459 0.4927

2 5.0299 1.0416 0.5073

2-2
1 1.1092 1.0417 0.5302

2 5.1238 1.8700 0.4698

2-4
1 1.0970 1.0345 0.5413

2 5.4535 3.2686 0.4587

3-1
1 0.9932 0.9591 0.8927

2 4.8908 1.4189 0.1073

3-3
1 1.0128 1.0081 0.6758

2 4.9614 1.1409 0.3242
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Fig. 4 Relative error: a) Cases 1-1 to 1-8; b) Cases 2-1 to 2-6; c) Cases 3-1 to 3-5

In Case 1, with the increase of the 2nd component mean (i.e. the distance
between two component centroids becomes larger), much better estimators of the
component means are obtained with the fact that the relative errors decrease
dramatically. Meanwhile, the relative errors of the component variances fluctuate but the
estimators of the component weights are of good quality. With the assumption that the
component densities distribute separately (we set 1 1.0µ = , 2 5.0µ = ), it is observed

from Case 2 that good estimators of most of the parameters are still obtained with the
increase of the 2nd component variance. The results of Case 3 reveals that different
mixing proportions for components have little influence on the parameter estimation.
From the above numerical examples, it can be inferred that when mixture samples
exhibit obvious multimodality, the parameters in the Gaussian mixture model can be well
identified by the proposed method.

4 APPLICATION TO STRESS RESPONSE DATA

4.1 Stress response of Tsing Ma Bridge

With the aid of the long-term SHM system instrumented on the Tsing Ma Bridge

(TMB), evaluating the structural health and performance of the bridge becomes feasible

through the analysis of huge amount of monitoring data. The monitoring of stain/stress

responses of TMB due to various load combinations is essential since strain/stress
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response could provide intuitive verification of the structural performance and safety. A

total of 110 strain gauges were installed on TMB aiming to measure dynamic strain

responses at three bridge deck sections denoted by CH23488.00, CH23623.00 and

CH24662.50 (chain mileages of the deck sections) as shown in Figs. 5 and 6 (Xia et al.,

2012). The deployment locations of the strain gauges include the chord members (top

chords, diagonal struts and bottom chords) of the longitudinal trusses, cross-frame

chord members, bracing members, deck trough and rocker bearings at one tower. Three

types of strain gauges, i.e. single, pair and rosette sensors, were used on the deck truss

members. The data were continuously acquired at sampling rates of 25.6 and 51.2 Hz,

respectively.

Fig. 5 TMB and strain monitoring sections

Fig. 6 Deck trusses of TMB and deployment of strain gauges

a)

b)

c)

d)



The in-service strain monitoring data acquired from the deck truss members of

TMB are the result of combination of different loadings including vehicle, railway,

monsoon, typhoon and temperature. The dead load caused initial strain cannot be

measured since the strain gauges were installed after the completion of construction.

Apart from the live loads, the temperature induced strain is considered to contribute little

to the stress because it is released by the movement and rotation of the bridge deck at

the expansion joint and bearings. A wavelet-based multi-component decomposition

algorithm (Ni et al., 2011a) is used to eliminate the temperature induced strain aiming to

obtain the live load induced strain which generates stress.

The strain monitoring data continuously collected during 24 hours at the bottom

chords of the deck truss of Section CH24662.50 under highway traffic, railway traffic and

normal wind loads are used in this study. Stress values are obtained by multiplying

elastic modulus of steel by strain in viewing that the bridge is in elastic stage under

operating environment. What we concern is those peak values in the stress time

histories and they are extracted and grouped into peak stress sequences as shown in

Fig. 7. This sample set contains 4200 peak values of stress response. From Fig. 7 we

can observe that the peak stresses are randomly dispersed but centralized to two

clusters, one is around 4.0 MPa and the other is around 10.0 MPa, exhibiting feature of

group structure data. Outliers in the sample set are observed and they will be addressed

in the proposed method. The histogram of peak stress shows distinct mixture property

so that the mixture distribution model is desirable to characterize the multimodality of the

peak stresses.

Fig. 7 Extracted peak stress sequences and stress histogram

4.2 Parameter estimation

The component number in the Gaussian mixture model should be first selected

adequately otherwise the model will lose the essential ingredients contained in the

stress information. A trial-and-error approach in conjunction with the Bayesian

Information Criterion (BIC) is adopted to find the optimal component number. BIC is a

measure that awards goodness of fit while penalizing model complexity (Kroese & Chan,

2014). Giving a set of competing models with different component numbers, the
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preferred model is the one with the maximum BIC value.

Fig. 8 Calculated BIC results

Fig. 8 shows the calculated BIC values among models with varying component

number. It is observed that BIC gives a maximum in the case of five components so that

the optimal component number for the Gaussian mixture model is determined as five.

The posterior densities of the model parameters are obtained by applying the proposed

Bayesian approach. Parameter estimation results including the sample mean and 95%

credible interval (CI) are further obtained as listed in Tab. 3.

Tab. 3 Model parameter estimation

Comp.

No.

µ 2σ ω

Mean 95% CI Mean 95% CI Mean 95% CI

1 12.3670 [11.3790, 13.3498] 9.8359 [7.2110, 13.0178] 0.0497 [0.0356, 0.0665]

2 3.6453 [3.5627, 3.7315] 0.9134 [0.8180, 1.0187] 0.4647 [0.4182, 0.5107]

3 10.0736 [10.0164, 10.1303] 1.1405 [1.0353, 1.2542] 0.3363 [0.3188, 0.3532]

4 18.5922 [11.9174, 28.6505] 96.7550 [51.6323, 170.9045] 0.0041 [0.0015, 0.0082]

5 5.0161 [4.7293, 5.3650] 2.1283 [1.7160, 2.6662] 0.1451 [0.1015, 0.1898]

It is found that the 2nd, 3rd and 5th components have almost represented the

mixture property of the stress response by the fact that the sum of weights for these

three components is very close to 1. It can be further interpreted that these three

components represent the effect of superposition of highway, railway and wind loads.

Weights of the 1st and 4th components are much smaller than others, implying that the

observed stress responses have less probabilities to be clustered to these two

components. These two components can be regarded as characterizing the statistical

features of the outliers or other effects contained in the entire population.
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Fig. 9 Data cluster result and estimated PDF

By using the sample means of the posterior distributions of the model parameters,

the estimated PDF for stress response under the combination of highway, railway and

normal wind loads is constructed as depicted in Fig. 9. It is seen that the formulated

Gaussian mixture model fits well with the histogram of stress response.

5 CONCLUSIONS

In recognition of the multimodal stress response data acquired from an

instrumented bridge, a Bayesian Gaussian mixture modelling method along with prior

specifications, posterior derivation and Gibbs sampling is presented in this paper.

Numerical examples illustrate that parameter estimations of the Gaussian mixture model

can be satisfactorily achieved by the proposed method in terms of good quality in results

and robustness under different parameter conditions. The case study with the use of

real-world data acquired from the Tsing Ma Bridge shows that the Gaussian mixture

model comprising five component densities fits well with the measurement results.
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