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ABSTRACT

For most of vibration signals of civil infrastructures have sparse characteristic,
namely, only a few modes contribute to the vibration of the structures. Additionally, the
measured vibration data by the sensors placed on different locations of structure almost
has same sparse structure in the frequency domain. Based on this group sparsity of the
vibration data of structure, the group sparse optimization based compressive sensing
(CS) for wireless sensors are proposed. Different from the Nyquist sampling theorem,
the data is first acquired by non-uniform low rate random sampling method according to
the CS theory. Then, the group sparse optimization algorithm is developed to
reconstruction the original data from incomplete measurements. The field tests on
Xiamen Haicang Bridge with wireless sensors are carried out to illustrate the ability of
the proposed approach. The results show that even using 10% random sampling data,
the original data can be reconstructed by the proposed group sparse optimization
method with small reconstruction error.

1. INTRODUCTION

The structural health monitoring (SHM) technology has developed about one
decades and a lot of civil infrastructures have been installed the SHM systems in the
world (Ou and Li, 2010; Li and Ou, 2016). In the wired sensors based SHM system, the
wired connection between sensors and data acquisition system reduces the reliability of
SHM system, increasing the system cost, and cause great difficulties for the
maintenance and replacement. Wireless sensors and wireless network have intelligent
data processing capabilities with embedding algorithm and do not have cables that will
great reduce the sensor installation cost.
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In SHM, great efforts have been made to explore wireless sensing systems and
some academic and commercial smart sensor prototypes have been developed and
used in the field of SHM (Lynch and Loh, 2006; Spencer Jr, et al. 2015). Comparing
with wired sensor, the wireless sensor and sensor networks need additional energy
acquisition technology to ensure the power supply of sensor. In addition, in the long-
term monitoring of the structure, the large amounts of data acquisition and wireless
transmission are likely to cause the instability of wireless sensor network. The wireless
data transmission process will consume most of the energy of sensor battery.
Therefore, it is necessary to embed data compression algorithm to reduce the amount
of data transmission, as far as possible to minimize energy consumption and prolong
the service life of wireless sensor. However, traditional data compression method
based on the sampling theorem has its limitations: first complete collection of data, and
then the data is compressed. For wireless sensor, data compression process will
consume part of the energy. Therefore, new methods data compression methods are
needed to effectively improve the wireless sensors and wireless sensor network for
long-term SHM.

In this paper, Compressive sensing (CS) is employed to reduce the data sampling
of wireless sensors, which data provides a new sampling theory to reduce data
acquisition with non-uniform low rate random sampling method, which said that the
sparse or compressible signals can be exactly reconstructed from highly
underdetermined sets of measurements under the assumption of signal sparsity and
under certain conditions on the measurement matrix (Donoho, 2006; Candes, 2006).
The potential of CS for the SHM has been investigated widely and many applications of
CS have been presented (Bao et al., 2009; Mascarenas et al. 2013).

2. COMPRESSIVE SENSING BASED ON GROUP SPARSE OPTIMIZATION
ALGORITHM

Different form the traditional Nyquist uniform sampling, the CS enables non-
uniform low rate random sampling. The Nyquist sampling needs to sense N samples of
a signal to avoid information loss; however, CS randomly sensing much fewer M N .
But according to the CS theory, if the original is sparse, CS is able to exactly recover it
from far fewer incoherent random measurements than what is required by sampling
theorem.

Suppose there are K sensors which are placed in the structure. The acceleration is

measured at discrete time jt , 1, ,= Kj M by each sensor. Here, we assume the total time

span of samples is [ ]0,T and the sample time is uniformly distributed, i.e. =jt jT M ,

1, ,= Kj M . By collecting all the data together, we get a ×M K matrix, Y,
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where mku is the data measured by kth sensor at time mt .



Then, the signal matrix, U is usually an incomplete matrix. Let

( ){ },, : is available= m km k UΩ and : × ×
Ω →M K M KP R R is the zero padding operator, that is
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Then the problem we are facing is from the given signal
×

Ω= ∈ M KP RY U , to calculate the

original signal matrix U .
The signal matrix Ucan be represented as

=U ΨX (3)

where Ψ is a Fourier matrix
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where ×∈ M KRX are the Fourier coefficients of original signal only has a few nonzero rows.
This representation gives us alternative way to recover the signal matrix U , which is so
called joint sparsity.

Considering the measurement noise, the Eq. (3) is changed to
= +U ΨX ε (5)

where ×∈ M KRε is Gaussian noise matrix.

To take advantage of the joint sparsity, usually, we try to minimize the
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One of the most often choice of ,p q is 2=p , 1=p , which is also the value of ,p qwe used

in this paper. Then the Fourier coefficients matrix X is recovered by solving the following
optimization problem:
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Once the optimal solution recX is obtained, the recovered signal matrix is given by

=rec recU ΨX (8)

3 FIELD TEST OF BRIDGE
3.1 Description of the test
The field test on Xiamen Haicang Bridge is carried out. The bridge is a steel box girder
suspension bridge with a span distribution of 230m+648m+230m as shown in Figure 1.
The test schemes are shown in Figure 2, which shows the tests are repeated with 9
times and the totally test points are 70, where the test point No. 30 are selected as the



reference point. Nine commercial wireless velocity sensors as shown in Figure 2 are
used in this test and the sampling frequency for data acquisition is 100Hz.

Figure 1. Xiamen Haicang bridge Figure 2. The wireless sensor node and
wireless base station

The representative dataset measured from the bridge are shown in Figure 3(a)
and the corresponding Fourier spectrum are shown in Figure 3(b), which shows the
multiple sensors data almost has similar sparsity in the frequency domain. To further
illustrate the similar sparsity of multiple sensors data, the cross correlation of the
Fourier amplitude spectrum are calculated by:
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The results show that the minimal and maximal cross correlation coefficient is 0.5117
and 0.9589, respectively. Most of the cross correlation coefficient within a range of [0.7,
0.95]. These cross correlation coefficients further indicate the group sparsity of the
signal.

(a) The measured velocity data of test points 29-36

(b) The Fourier specturm of the measured velocity data of test points 29-36
Figure 3. The typitical measurements and Fourier specturm

3.2 Data sampling by CS
The typical measured velocity data by wireless sensor is shown in Figure 4(a).

We simulate the non-uniform low-rate random sampling of CS, the data with 10% and
30% samples are shown in Figure 4 (a, b).
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(a) (b)
Figure 4. The sampling data by CS: (a) original data; (b) 30% samples

3.3 Data reconstruction results
The data reconstruction results for 10% and 30% samples are shown in Figures 5

and 6, in which the Figures 5(a) and 6(a) are the reconstruction results using only one
sensor data and Figures 5(b) and 6(b) are the reconstruction results with group sensors
data. These figures show that the smaller reconstruction errors can be achieved by
considering multiple sensors data using the group sparse optimization methods.

(a) (b)
Figure 5. Data reconstruction results from 10% samples: (a) reconstruction from single

sensor data; (b) reconstruction from group sensors data

(a) (b)
Figure 6. Data reconstruction results from 30% samples: (a) reconstruction from single

sensor data; (b) reconstruction from group sensors data sets

4. CONCLUSIONS
This paper proposed a group sparse optimization method for compressive

sensing data reconstruction of wireless sensors for structural health monitoring, which
used the group sparsity of structural vibration data of multiple sensors to improve the
data reconstruction accuracy.

Field tests results on Xiamen Haicang Bridge show that even using 10% random
sampling data, the original data can be reconstructed using the group sparse
optimization method with small reconstruction error. Comparing with data
reconstruction, the smaller reconstruction errors can be achieved by considering
multiple sensors data using the group sparse optimization methods than the method
only using single sensor data.
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