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ABSTRACT

This paper studies the damping and frequency of a taut cable with a damper and a

concentrate mass. The complex characteristic equation of this cable-damper-mass

system are obtained based on the taut string theory and by considering the compatibility

requirements on each constraint point. By using a transfer matrix method. Asymptotic

approximate solutions for damper and mass close to the cable end are developed

provided that both the non-dimensional mass coefficient and the frequency shift

between the free and damped cable system are small. The influences of the

non-dimensional mass coefficient and its location on the maximum cable vibration

damping, the optimal damper constant, and the corresponding frequency are also

studied as both the damper and mass is installed near the cable anchorage. It is found

that the mass will significantly increases the system damping when it was attached to

nearby the damper when mass value are smaller than a critical value.
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1. INTRODUCTION

For a cable-stayed bridge, the damping and frequency in stay cables are very low, and

thus the cables are often vulnerable to environmental excitations such as wind,

wind-rain [1,2] or parametric excitations. Therefore, it is of great interest to understand

the dynamic behavior of cables for possible engineering application in bridge structures.

Practical measures have been taken to mitigate stay cable vibrations. One of the most

widely-used damping devices is the passive viscous damper that is often installed near

the cable anchorage [3, 4, 5]. The method of optimizing the damper attached to a stay

cable has been comprehensively studied with consideration given to different aspects of

non-ideal factors, such as damper nonlinearity, supporter flexibility, internal stiffness,
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cable sag and bending stiffness [6-9]. However, little attention has been paid to more

general results involving a taut cable with a damper and mass. The damper and the

clamping to connect damper and cable, or some other devices connected to the cable,

are concentrate masses themselves, which will, in turn, inevitably change the dynamic

behavior of the cable-damper system. There are only limited results concerning this

issue. Krenk [10] and Duan [11] discussed this problem for the case of small mass

values: when a mass is at the same position with viscous damper near the cable

anchorage, the effect of the mass on the maximum damping will increase and that on

the corresponding optimal damping constant will decrease. In this paper, the damping

and the frequency of a taut cable with a damper and a mass are investigated. The

approximate solution obtained for the cable-damper-mass system can facilitate the

design of the damping device with a nearby concentrate mass attached to a taut cable.

2.GENERAL PROBLEM FORMULATIONS

Figure 1 shows a damper and a mass attached separately to a taut cable. c is the

viscous damping coefficient of the damper, M is the concentrate mass. The length

between the left cable anchorage and the damper is l1 denoted as, whereas the length

between the damper and the mass is l2, and the length between the right cable

anchorage and the mass is l3=L- l1- l2 where L is the total length of the cable.

Figure 1. Taut cable with a damper and mass

Since the internal structural damping of a stay cable is very small, it is neglected in this

study. The free vibration of the cable-damper-mass system in the transverse direction

can be described by the following partial differential equation for each part of the

cable[12]:
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where yp(xp,t) is the transverse displacement of the cable at point xp, and xp is the

coordinate along the cable chord axis in the pth part (p=1,2,3); m is the cable mass per

unit length; and T is the cable tension force. To solve Eq. (1) subjected to boundary,

continuity, and equilibrium conditions, distinct solutions over the three cable segments

are assumed to exist of the form [4, 5]:
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yp(xp,τ ) = ( )p pY x eλτ (2)

where the non-dimensional time 01tτ ω= and 01 L T mω π= ; λ is a dimensionless

eigenvalue that is complex in general， iλ α β= + ， 1i = − . For specific value of c，M，

l1/L and l2/L，λ can be derived, which contains the information of vibration damping and

frequency:
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where ζ is modal damping ratio and ω is the modulus of the dimensional eigenvalue.

By taking Eq. (2) into Eq. (1) the following equation can be obtained:
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Because λ is complex in general, the solutions to Eq. (4), which are the mode shapes of

the system, are also complex. Suppose that the mode shape could be expressed as [4,

5]:

( )p pY x =Apsinh(πλxp/L)sinh-1(μpλ)+Bpcosh(πλxp/L)cosh-1(μpλ) (5)

where Ap and Bp are the components of the complex amplitude, and μp=πlp/L.

Boundary, compatibility and equilibrium conditions should be satisfied for Eq. (5). For

the boundary and compatibility conditions:

( )0, 0p py x τ= = when p = 1,3 (6a)

y1(l1,τ )= y2(0,τ ) (6b)

y2(l2,τ )= y3(l3,τ ) (6c)

At the damper and the mass location, there is a discontinuity in the cable slope,

providing a transverse force matching the damper and inertial force:
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By substituting Eq. (2) and Eq. (4) for Eq. (6) the following equations are derived
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where the non-dimensional mass coefficient is φ=πM/(mL), and the non-dimensional

damping constant is c Tmη = .

The above-mentioned equations can be transformed into matrix form:

0Φ =C (8)

where C is the complex matrix:
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where  Γp=πλlp/L and Φ is the corresponding complex amplitude vector:

[ ]1 2 2 3

T
A A B AΦ = (10)

The infinite set of nontrivial solutions (Φ≠0) means that det(Φ)=0 can be solved for the

normalized frequency λ, and the characteristic polynomial is:
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Eq. (11) can be further re-written in terms of the imaginary- and real-part equation.

3. ASYMPTOTIC SOLUTIONS

3.1 Both damper and mass close to cable end

In case that both damper and mass are located near the cable end, and the concentrate

mass is much smaller than that of the total cable mass mL, the frequency change

induced by damper and the concentrate mass is small. This is similar to the case of a

taut cable with an attached damper near a cable end. The asymptotic relationships can



be found in the presence of both damper and mass. In the following sections four

different cases are discussed on the basis of different damper and mass locations.

(1) When damper and mass are located near the left side anchorage, l1L
-1<<1 and

l2L
-1<<1; meanwhile, the change in λ is small, the change in α and β is also small, and

β ≅ n δβ+ . The real part and the imaginary part in terms of Taylor series can be further

re-written, after some simplification becoming:
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where the non-dimensional damper parameter grouping is:

1
l nκ π −= ηl1/L (13)

Also, the factor that considers effects of mass is:
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The maximum damping and the corresponding non-dimensional damper parameter

grouping could be easily derived from Eq. (12):
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The first five modes of the non-dimensional damping vs. damping parameter grouping

based on the numerical solution are displayed in Figure 2, together with the related

approximate curves for the case l1/L=l2/L=0.02 and Φ=0.1. It shows that both numerical

and approximate solutions agree reasonably well for the first 4 modes, except for the 5th

mode, which will be discussed later.

(2) When damper and the concentrate mass are located near the right side anchorage,

1
3 1l L− << , 1

2 1l L− << , and after the same simplification the following equations are

obtained:
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The corresponding maximum damping ratio and the optimum damping parameter

grouping can be derived from Eq. (17):
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Eqs. (12) and (17) can be regarded as the design formula of a cable with a concentrate

mass near the viscous damper. Because the factors ( )2 2
2 1 2

1

1- 1- ( )n nφ µ φ µ µ + 

Eml and Emy are larger than 1 when the product Φn2 is smaller than 1.0 (equal to 1 only

when Φ=0), It can be concluded that the attainable maximum damping  ξn,max will be

larger than in the case without a concentrate mass, and the corresponding optimum

damping constant will be decreased, regardless of the type of relative location of

damper and mass.

(3) A special case is that both mass and damper are connected to the cable at the

same location, as was also discussed by Krenk and Høgsberg [10]. This corresponds to

l2=0 in Eq. (12) and (17):
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The corresponding maximum damping ratio ( ), 1

1

2
n max mpl L Eξ ≅ , which clearly

demonstrates the increment of damping.

(4) When damper and mass are located by the two different cable ends, it is found

that damper and mass do not affect each other. Similar behavior was observed for the

case of a taut cable with attached damper and spring located at two different cable ends

[17]. Thus it will not be further discussed in this paper.

It should be noted that the above-mentioned approximate formulas are based on the

assumption that Φn2 is far smaller than 1. Studies reveals that as Φn2 increases, the

discrepancy between the approximate prediction and the numerical solution becomes

larger. The same tendency is also illustrated in Figure 2 for the fifth mode with Φn2=0.25.
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Fig. 3 shows the numerically calculated contour map of the 1st mode damping with

l1/L=0.02 and l2/L=0, where the label in the curves indicates the value of ξ1L/l1. It can be

clearly seen that the damping firstly increases for small Φ (n=1 for the 1st mode), until Φ

is about 15-20, at which a maximum value of ξ1L/l1 is reached. Afterwards, ξ1L/l1
decreases sharply. The Eq. (23) roughly predicts this critical non-dimension mass, i.e.

Φ=1/μ1=15.92, which is illustrated in Fig. 3 for a range from about 15 to 18.

Figure 2. Comparison of approximate

results with numerical solutions

(l1/L=l2/L=0.02, Φ=0.1)

Figure 3. Contour maps

of 1stmode damping

(l1/L= 0.02, l2/L=0)

4. CONCLUSIONS

The damping and frequency of a taut cable attached with a viscous damper and mass is

analyzed in this paper. The effects of the non-dimensional mass coefficient and the

mass location on cable vibration, damping, and frequency are dealt with in detail. The

concentrate mass increases the maximum attainable cable vibration damping when a

damper and a mass are both placed near the cable anchorage and the non-dimensional

mass coefficient is smaller than some critical value. However, the mass will significantly

decrease the attainable cable damping if the non-dimensional mass coefficient is larger

than the critical value. The mass has negligible effects on the cable damping when a

mass and a damper are placed near two different cable anchorages.
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