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ABSTRACT 
 

     In the design of box girder bridges, the effective flange width is commonly used to 
calculate the normal stresses under bending to consider the influence of the shear-lag 
effect. As composite box girder bridges with corrugated steel webs are getting popular 
around the world, it is important that a rational concept of the effective flange width can 
be adopted for such bridges to ensure their safety. This paper proposes a new method 
to calculate the effective flange width for the composite box girders with corrugated 
steel webs. It takes into account the non-uniform distribution of the normal stresses on 
the flange cross-section as well as the influence of the varying thickness of the flange 
along the transverse direction. Comparison is carried out between the proposed and 
two traditional definitions of the effective flange widths on the basis of the 3D finite 
element simulation for a continuous bridge with a span arrangement of (88+156+88) m 
under the self-weight. The coefficients of effective flange widths are first calculated 
according to the three definitions. Then the normal stresses are calculated following the 
elementary beam theory with the adoption of the three definitions and then compared 
with the simulated stresses. The comparative study shows that the proposed definition 
of the effective flange width in this paper can the most accurately predict the peak 
stress, and to some extent reduce the cost of the bridge construction. Therefore, the 
proposed definition of the effective flange width in this paper is suggested for the 
design of composite box girder with corrugated steel webs. 
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1. INTRODUCTION 
 
     Composite box girder bridges with corrugated steel webs is getting popular in 
China and around the world in recent years. With the use of the corrugated steel webs, 
the self-weight of this type of bridge is greatly reduced, and the mechanical 
performance is strongly enhanced. Moreover, the construction of this kind of bridge is 
relatively simple and inexpensive. The basic mechanical behavior, such as the bending, 
shearing and torsional behaviors, of composite box girders with corrugated steel webs 
have been intensively investigated (Jiang 2015).  
     When a box girder is subjected to bending, the normal stress is not uniformly 

distributed along the transverse direction of the flange due to the non-uniform 
distribution of the shear strain of the flange, which is called “the shear-lag effect”. The 
safety of a bridge cannot be assured until the shear-lag effect is properly considered in 
the bridge design. However, the research on the shear-lag effect of composite box 
girders with corrugated steel webs is rather limited. Accordingly, how to consider the 
influence of the shear-lag effect in the design of this kind of bridge is debatable.  
     In the current engineering practice, the effective flange width is usually used to 
calculate the cross-sectional normal stress, so that the shear-lag effect can be 
somehow considered. Generally speaking, two traditional methods (termed as Methods 
1 and 2, respectively) are usually used to calculate the effective flange width for box 
girders. In Method 1, the normal stress on the outer boundary of the flange cross-
section is first integrated over the width of the flange and then divided by the maximum 
normal stress (e.g. Lin 2011). This method does not consider the non-uniformity of the 
stress along the thickness of the flange. In Method 2, the normal stress is first 
integrated over the whole flange cross-section, and then divided by the product of the 
maximum normal stress and the thickness of the flange (e.g. Ahn 2004). It is only 
applicable to the flange with a uniform thickness. Due to the limitations of these 
traditional methods, they cannot be directly applied to the flanges with varying 
thickness. However, the box girders with corrugated steel webs usually have flanges 
with varying thickness.  
     Therefore, in this paper, a new method is first proposed to calculate the effective 
flange width of flanges with varying thickness. Then based on this method, the effective 
flange width of the composite box girders with corrugated steel webs is numerically 
studied based on a three-span continuous box girder bridge with a span arrangement 
of (88+156+88) m. The example bridge is modeled using solid and shell elements in 
ANSYS so that the accordion effect of the corrugated steel webs can be appropriately 
taken into account. 
 
 
2. CALCULATION OF EFFECTIVE FLANGE WIDTHS 
 
     2.1 Effective flange width 
 
     It is assumed that within the range of the effective flange width, the normal 
stresses are uniformly distributed, and their magnitude is equal to the maximum normal 
stress on the actual cross-section. The integral of the assumed stresses should be 



  

equal to the actual axial force at the same cross-section. As shown in Fig. 1, bi and ti (i 
= 1, 2, 3) are the width and thickness of the flange, respectively; bei is the effective 
flange width; Ai is the cross-sectional area of the flange; x is the actual normal stress; 
x,max is the maximum value of x. The definition of the effective flange width can be 
expressed as: 
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     In design, the coefficient of effective flange width,, which is defined as = bei/b 
is usually used to take the shear-lag effect into account. 
 

 

Fig. 1 Schematic diagram of effective flange width 
 
     2.2 Proposed method for effective flange width calculation 
 
     In practice, the thickness of the flange in a composite box girder with corrugated 
steel webs usually varies along the transverse direction, as shown in Fig. 2. Meanwhile, 
the normal stresses are not uniformly distributed along both the width and the thickness 
of the flange. A rational calculation method of the effective flange width should be able 
to take into account the influence of these two factors. 
     In this research, a new equation is used to calculate the effective flange width of a 
composite box girder with corrugated steel webs, as given in Eq. (2): 
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where x is the normal stress on the flange cross-section; y and z are the transverse 
and vertical directions of the same flange cross-section; tai (i = 1, 2, 3) is the average 
thickness, which can be calculated by tai = Ai/bi; ybi is the y-coordinate of the 
intersection point of the flange and the web. All the variables are shown in Fig. 2. In the 
denominator of the right-hand-side term in Eq. (2), the normal stress is integrated along 
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the average depth of the flange, tai. In this way, the proposed method can be applied to 
flanges with varying thickness. If i > 1, the effective flange width is larger than the 
actual width of the flange, which means the shear-lag effect is negative, and vice versa. 
The value of i represents the degree of the influence of the shear-lag effect. 
      

 

Fig. 2 Schematic diagram of the proposed calculation method 
 
     2.3 Traditional methods for effective flange width calculation 
 
     The two traditional methods, termed as Methods 1 and 2, mentioned in Section 1 
for the calculation of the effective flange widths of box girders are expressed as Eq.(3) 
and (4), respectively.    
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where xo represents the normal stress along the outer boundary of a cross-section.  
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where ti is the thickness of the flange. 
 

 

3. COMPARATIVE STUDY 
 
     To study the applicability of the proposed calculation method for the effect flange 
width, 3D finite element simulation is performed for a three-span continuous composite 
box girder bridge with corrugated steel web subjected to its self-weight. The coefficients 
of effective flange width are calculated using the proposed method and Methods 1 and 
2 (Eqs. (3) (4)), and then used to calculate the normal stresses on the bridge cross-
sections based on the elementary beam theory. The results based on these three 
methods are compared with each other. 
 
     3.1 Example bridge and finite element model 
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     In this research, a three-span continuous composite box girder with corrugated 
steel webs is studied as an example bridge. The length of the main span is 156 m, and 
the length of each side span is 88 m. The typical cross-sections of the bridge are 
shown in Fig. 3. The width of the top flange is 16.25 m. The height of the girder is 8.3 m 
at the intermediate support location, and 3.5 m at the mid-point of the main span. The 
height of girder varies following a parabolic curve with a power of 1.6 from the 
intermediate support location to the mid-point of the main span. 
 

 
 

Fig. 3 Cross-sections of the example bridge 
 
     The finite element model is developed in ANSYS, which is shown in Fig. 4. The 
concrete flanges and the corrugated steel webs are modeled using SOLID45 and 
SHEEL63 elements, respectively. They are connected through the same nodes shared 
by the flange and web elements. The vertical displacements of the nodes at the bearing 

locations are restraint. Only half of the bridge is modeled considering the symmetry 
along the length of the bridge, thus the longitudinal displacements of the nodes at the 
mid-point of the main span are set to zero. In the finite element model, both the 
concrete and the steel are modeled as linear elastic materials. The material properties 
are summarized in Table 1. The finite element model consists of 225758 elements and 
317490 nodes.  
      

Table 1 Material properties in the finite element model 

Materials Density 
(kg/m3) 

Young’s modulus 
(MPa) 

Poisson’s ratio 
 

Concrete 2600 3.45×104 0.20 

Steel 7850 2.01×105 0.30 
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Fig. 4 Part of the finite element model of the example bridge 

 
     3.2 Effective flange widths under self-weight 
 
     Because the self-weight takes up about 80% of all the loads of a bridge, the case 
in which the bridge is subjected to its self-weight is considered in this research. The 
self-weight is applied to the finite element model by inputting the density and applying 
the gravity to the model. Fig. 5 shows the distribution of the normal stress on the cross-
section at x = 91 m (x is the longitudinal coordinate with its origin at one end of the 
example bridge). This cross-section is located at the intermediate support location and 
on the mid-span side of the diaphragm. The maximum negative bending moment 
occurs at this cross-section, generating a maximum tensile stress of more than 14.6 
MPa in the top flange. 
      

 
Fig. 5 Normal stress distribution at x = 91 m under self-weight 

 
     The coefficients of effective flange width calculated by the proposed and two 
traditional methods are shown in Fig. 6. The results for the cantilever flange, the top 

and the bottom flange of the cell are shown separately. According to the figure, for the 
cantilever flange and the top flange of the cell, the coefficients of effective flange width 
obtained using the proposed method are similar to those estimated based on Method 1. 
Method 2 gives far smaller results in these two cases. This is because the maximum 
stress on a cross-section is used in the denominator of Method 2, which will lead to 
conservative results. If the coefficients of effective flange width calculated using Method 
2 are adopted for the bridge design, the cost of the bridge construction may increase. 
On the other hand, for the bottom flange of the cell, the proposed method and Method 
2 give similar results. However, the results calculated by Method 2 are still smaller, 
which shows again this method is conservative. The results obtained using Method 1 
seems irrational because this method cannot consider the influence of the non-uniform 
distribution of the normal stresses along the thickness of the flange. The longitudinal 

(MPa)



  

distribution of the coefficients of effective flange width presented in Fig. 6 also shows 
that the influence of the shear-lag effect is more severe in the part where positive 
bending moment occurs. Some singular points can be observed at the location where 
the bending moment is nearly zero and at the mid-point of the main span because the 
stress is close to zero or the influence of the boundary conditions. 
 

 

 
 

Fig. 6 Coefficients of effective flange width calculated using different methods under 
self-weight 
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(a) Cantilever flange
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(b) Top flange of the cell
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(c) Bottom flange of the cell
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     3.3 Verification based on the elementary-beam theory 
 
     The proposed method is further verified based on the elementary beam theory. 
To be more specific, first the moment of inertia is calculated for each cross-section by 
replacing the actual flange width with the corresponding effective flange width. The 
effective flange widths are the product of the coefficients of effective flange width (as 
shown in Fig. 6) and the actual flange width. Afterwards, the calculated moment of 
inertia is used to calculate the normal stress following the elementary beam theory. Let 
 represents the ratio between the normal stress obtained using the elementary beam 
theory, 0, and the maximum normal stress on the corresponding cross-section in the 

finite element model, *
max (i.e.  = 0/

*
max). The distributions of  along the 

longitudinal direction of the bridge are shown in Fig. 7. The values for the top and the 
bottom of the cross-section are shown separately. If the  value is close to 1.0, 0 is 
almost equal to *

max, which indicates the adopted effective flange width is accurate. As 
shown in Fig. 7, the normal stresses calculated using the proposed effective flange 
width agree well with the simulated value in both cases. Method 2 leads to the most 
conservative results, as the corresponding  values are larger than those obtained by 
other methods. For the top of the cross-sections, the results obtained using Method 1 
are similar to those obtained using the proposed method. However, for the bottom of 
the cross-sections, the two methods deviate from each other. 
     Further define the cumulative deviation, , as 
 

 
2

1                                 (5) 

 
The values of  for different cases are listed in Table 2. It can be observed that the 

cumulative deviation of the proposed method is the smallest. Therefore, the proposed 
method is the most accurate one among these methods, and it is suggested to be used 
in the design of composite box girder bridges with corrugated steel webs. 

 

 
 

Fig. 7 Distribution of  based on the elementary beam theory under self-weight 
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(b) Bottom of cross-section

0 25 50 75 100 125 150 175
0.7

0.8

0.9

1.0

1.1

1.2



纵向桥坐标

下缘
 本文方法
 一类方法
 二类方法

0 25 50 75 100 125 150 175
0.7

0.8

0.9

1.0

1.1

1.2

C
o

e
ff
ic

ie
n

t 
o

f 
e

ff
e

c
ti
v
e

 f
la

n
g

e
 w

id
th

Logitudinal coordinate (m)

 Proposed method

 Method 1

 Method 2

Composite box girder



  

Table 2 Cumulative deviation of different methods 

 Proposed method Method 1 Method 2 

Top of cross-section 0.008 0.009 0.269 

Bottom of cross-section 0.114 0.275 0.123 

 
 

4. CONCLUSIONS 
 
     In this paper, a new method for the calculation of the effective flange width is 
proposed for the composite box girder with corrugated steel webs. The main 

conclusions are as follows. 
     (1) The influences of the non-uniform distribution of the normal stresses and the 
varying flange thickness are properly considered in the proposed method. 
     (2) Based on the finite element simulation results of an example bridge subjected 
to its self-weight, the coefficients of effective flange width calculated using three 
methods are compared. It shows that the effective flange width coefficient calculated 
using the proposed method is the most rational one, which can ensure the bridge safety 
and at the same time save the cost of bridge construction to some extent. 
     (3) When used to calculate the normal stresses of an example bridge subjected to 
bending, the coefficients of effective flange width obtained using the proposed method 
yields the least cumulative deviation. 
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