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ABSTRACT 
 

This paper aims at solving the optimal pinpoint landing trajectory on Mars, using 
the sequential multiresolution technique. In this technique, the optimal landing trajecto-
ry is sought merely in the immediate future whereas the full trajectory is sequentially 
determined by moving the initial conditions toward the final conditions. Thus, uncertain-
ties and perturbations during the landing are absorbed into the sequential optimization. 
The benefits of this technique are demonstrated on the pinpoint Mars landing problem. 
The sequential optimal solutions are closed-loop solutions in fact, so it is possible to 
code the technique on an onboard computer for practical landing guidance.  
 
 
1. INTRODUCTION 
 

The landing accuracy on the surface of Mars has progressed steadily over the 
last four decades, from about 200 km of target for the Vikings to 150 km for the Mars 
Pathfinder to 35 km for the Mars Exploration Rovers. The Mars Science Laboratory 
(MSL) has an even high landing accuracy, with a delivery of within 10 km of the target. 
The next generation of Mars missions such as the sample return and human explora-
tion missions will require Mars probes to perform tasks at specific points of interest on 
the Martian surface. Thus, the performance of pinpoint landings (defined as landing 
within 100 m of the target) will be of utter importance. Considerable work has been 
done to improve the landing accuracy (Braun et. al 2007, Shen et. al 2010).  

This study focuses on generating a closed loop landing trajectory for powered de-
scent stage using the sequential optimization technique. The sequential technique was 
originally proposed by Ross et. al in combination with pseudospectral method to solve 
multi-scale and long-horizon trajectory optimization problems (Ross et. al 2007, Yan et. 
al 2011). Another sequential optimization technique was developed by Jain et. al in 
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combination with multiresolution technique to solve problems with moving targets (Jain 
et. al 2009). In this technique, the optimal trajectory is sought merely in the immediate 
future whereas the full trajectory is sequentially determined by moving the initial condi-
tions toward the final conditions. As move forward in time, the problem is solved again 
on the new horizons, any propagation error that occurs before the new horizon is ab-
sorbed automatically into the new initial conditions. Thus the sequential optimization 
technique is able to provide a closed loop optimal landing trajectory.  

This paper is organized as follows. First, the formulation of minimum-fuel powered 
descent problem is described. Then, a brief overview of the sequential optimization 
technique is presented, including the generalized dyadic grids, the mesh refinement al-
gorithm based on the generalized dyadic grids and the sequential optimization algo-
rithm. The simulation results and the conclusions are presented in the end.  
 
 
2. MINIMUM FUEL POWERED DESCENT PROBLEM 
 

The powered descent phase of a Mars landing trajectory typically starts when the 
parachute and heat shield are jettisoned (the handoff), and from then on, thrusters are 
used to guide the lander to a safe landing site. A uniform gravitational field is used, and 
the aerodynamic forces and the rotation of the planet are neglected. 

A surface-fixed coordinate system o-xyh is defined to describe the position and 
velocity of the lander. The origin is anchored at the planned landing point, the x and y 
axes span the horizontal plane, and the h axis points upward. Let vx, vy, and vh denote 
the velocities along the three axes, and let m denote the mass of the lander. Then the 
state vector is defined as x = [x, y, z, vx, vy, vh, m]T. Let g denote the gravitational ac-
celeration on the surface of Mars, and let g0 denote that at the sea level on Earth. Let 
there be n identical thrusters with specific impulse Isp. Each thruster supplies a maxi-
mum thrust T and is throttled at the same level, which leads to all the thrusters produc-
ing the same thrust at any time. The thrusters are mounted such that they are canted at 
an angle   from the net thrust direction. Thus, the net thrust is cosn T   .  

The translational motion of the lander is controlled via modulating the throttle of 
the thrusters and the direction of the net thrust vector. Let u be the vector that points in 
the direction of the net thrust and has a magnitude of the thruster throttle u. Let ux, uy, 
and vh be the three components of u along the x, y, and h axes respectively. Then u= 
[ux, uy, vh]

T can serve as the control vector. With the above definitions, the differential 
equations of the translational motion can be written as (Shen et. al 2010) 
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Once the thrusters are switched on, they remain on throughout the descent. Thus, 
the engine throttle is bounded between two nonzero settings; i.e., 
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The position and velocity at both ends of the powered descent trajectory are 
specified. The initial condition, denoted by x0, is given at the hand-off, and the lander at 
the end of the descent is at rest at the planned landing point. The assumption of zero 
final position and velocity vectors are assumed. Thus 
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where r(t) and v(t) denote the position and velocity vectors at time t. 
During the powered descent, the spacecraft obviously cannot travel below the 

planet surface, which leads to the following state constraint: 

 ( ) 0h t   (4) 

The objective of the optimal control is to guide the lander from the initial condi-
tions to the final conditions with the minimum amount of fuel consumption; that is, 
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where the final time is free.  
It is convenient for optimization to transform the physical time interval to the scaled 

time interval τ[0, 1] via the following transformation 
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3. SEQUENTIAL OPTIMIZATION 
 

3.1 Generalized Dyadic Grid 
 
A uniform generalized dyadic grid over the unit interval [0, 1] is a collection of 

points obtained by successively subdividing any uniformly distributed initial grid,  
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where N is the number of intervals in the uniformly distributed initial grid, j denotes the 
resolution level, k is the spatial location, and Jmax is a positive integer which specifies 
the maximum resolution level.  

We denote by Wj, N the set of grid points belonging to Vj+1, N but not Vj, N, that is,  
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Hence,  j+1, kVj+1, N if and only if  
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An example of a uniform generalized dyadic grid is shown in Fig. 1 (N=5, Jmax= 5). 



The subspaces Vj, N are nested; that is, V0, N V1, N VJmax, N, with 
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Fig. 1 Example of generalized dyadic grid (N = 5, Jmax= 5) 
 

Furthermore, the sequence of subspaces Wj, N satisfies the property Wj, N ∩Wl, N =  for 
all j ≠ l. Notice that these dyadic grids are constructed by successive subdivisions. Fur-
thermore, the sets Vj, N and Wk, N for k ≥ j are orthogonal to each other, as are the sets 
Wj, N and Wl, N for j ≠ l (see Fig. 1). Such subdivision schemes of initial grids can be 
used to construct refined grids. The idea here is that one can keep only the even-
indexed points in the grid and generate the odd-indexed points (at every level) using 
some interpolation. The use of subdivision schemes simplifies the computations.  

The continuous optimal control problem can be easily discretized on a set of gen-
eralized dyadic grid (either uniform or nonuniform).  
 

3.2 Mesh Refinement Algorithm 
 
Let a nonuniform grid of the form 
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Suppose  : 0,  1 rNΦ R  is specified on the grid Gold such that 
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l N G    Φ  (12) 

where Nr is the dimension of the function .  
To refine the grid Gold, firstly initialize an intermediate grid Gridint =V0, N, with func-

tion values 
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and set j = 0. Then the procedures to refine the grid Gridold are as follows:  
(1) Find the points that belong to the intersection of Wj, N and Gold 
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where i is the index number of the point in T̂ , and ˆN
 is the number of nodes in T̂ .  

(2) Set i = 1, and execute the following (a)~(f).  

(a) Compute the interpolated function values Φ̂  at 
,

ˆˆ
ij k

T   using the pth-order 

essentially non-oscillatory (ENO) interpolation.  
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ˆ
ij k

  to the intermediate grid Gridint and move on to the next step. The 

thresholds are chosen so that they are small and constant in the immediate future, and 
increase exponentially approaching the final time (Jain et. al 2009).  

(c) Add to Gridint N1 points on the left and N1 points on the right neighboring to the 
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(d) In a similar way, add to Gridint 2N2 neighboring points at the next finer level, i.e. 
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(e) Add the function values at all the newly added points to int. If the function 
value at any of the newly added points is not known, interpolate the function value at 

that point from Gridold and old using the pth-order ENO interpolation.  

(f) Increment i by 1. If ˆi N , go to Step 2a, otherwise move on to the next step.  

(3) Increment j by 1. If j ≤Jmax-2, go to Step 1, otherwise move on to the next step.  
(4) Terminate the algorithm. The final nonuniform grid is Gridnew = Gridint and the 

corresponding function values are in the set new = int.  
 

3.3 Sequential Optimization Algorithm 
 
The basic idea behind the sequential algorithms is to solve the trajectory optimi-

zation problem at hand over a suitably horizon. As we continue to move forward in time, 
we solve the problem again on the new horizons, using the solution of the previous 
horizon as an initial guess (Ross et. al 2007). The procedures are as follows:  

(1) Partition the scaled time interval [0, 1] into Ns segments with Ns+1 nodes, 0 = 

0 < 1 < ... < Ns = 1. These segments need not be uniformly spaced. Set i = 0.  
(2) Solve the optimal control problem on the horizon {t0, tf}, with the grid is refined 

using the procedures given in Section 3.2, where tf is either fixed or free.  
(3) Propagate the differential equation from ti to ti+1 using x0 as the initial condition 

and the ENO interpolation of the controls, ui+1(t), t[ti, ti+1] based on the discretized con-
trol solution obtained in step 2, where ti is the physical time corresponding the scaled 

time i in step 1. This step generates a continuous-time trajectory, xi+1(t), t[ti, ti+1]. This 
propagation is done numerically via some high-precision propagator, say the standard 
4th/5th-order Runge–Kutta method.  

(4) if i < Ns-1, set x0=xi+1(ti+1) and t0=ti+1, increase i by 1 and go to step 2; other-



wise terminate the algorithm. The optimal trajectory is given by the chain, i.e. {x(t), t[t0, 

tf]}={x1(t), t[t0, t1]; x2(t), t[t1, t2]; ...; xN(t), t[tN-1, tN]}. Similarly, the corresponding con-

trols are given by {u(t), t[t0, tf]}={u1(t), t[t0, t1]; u2(t), t[t1, t2]; ...; uN(t), t[tN-1, tN]}.  
 
 
4. NUMERICAL SOLUTION 
 

It is assumed that the lander carries 400 kg of fuel at the hand-off, with a total wet 
mass of 1905 kg. Other parameters of the lander used in the simulations are: 
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The boundary conditions are:  
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In this example, we choose Ns=5 and N=5, i.e. the time interval is divided into 5 
segments, and 6 base nodes is used in each segment to start the mesh refinement. 
The control magnitude found in each sequential optimization is shown in Fig. 2~4. It is 
clear that the algorithms autonomously discretize the trajectory with more nodes near 
the current time (not necessarily uniformly placed) while using a coarser grid for the 
rest of the trajectory to capture the overall trend. The combined trajectory and the con-
trol found on different horizons are shown in Fig. 3 and Fig.4. The optimal maximum–
minimum–maximum throttle profile is captured accurately with little noise.  

The minimal fuel consumption is 291.258 kg, which is very close to that of 
291.255 kg obtained by solve the problem directly without using the sequential optimi-
zation, in which case the mesh is refined on the whole horizon. For further comparison, 
Fig. 5 plots the optimal thrust throttle profile along with that obtained from the direct op-
timization. The two profiles are so close that the differences are nearly invisible, which 
verifies the high accuracy of the sequential optimization in this case. However, the con-
trols obtained from the sequential optimization are closed-loop controls by absorbing 
the accumulation errors in previous trajectories into the new initial conditions, prevent-
ing them from being carried over to the remaining part of the trajectory.  

Currently the time for generating each sequential optimal trajectory in this case 
was about 1.6 seconds on a desktop computer. Note that the computation was all car-
ried out in the MATLAB language for convenient. The run time can be significantly re-
duced by optimizing the code and coding the algorithms in C or FORTRAN.  

 
 
 
 
 
 



 
(a) Control magnitude for horizon 1     (b) Control magnitude for horizon 2 

 

 
(c) Control magnitude for horizon 3     (d) Control magnitude for horizon 4 

 

 
(e) Control magnitude for horizon 5     (f) Control magnitude for horizon 6 

Fig. 2 Control magnitude for horizon 1, 2, 3, 4, 5 and 6 
 



 

Fig. 3 Optimal states found on different horizons: (a) Position; (b) Velocity 
 

 

Fig. 4 Optimal controls found on different horizons: (a) Component; (b) Magnitude 
 

 

Fig. 5 Comparison of the thrust throttle profile 
 



5. CONCLUSIONS 
 

The sequential optimization technique is used to solve the minimal fuel Mars pin-
point landing problem in this paper. The multiresolution technique based on general-
ized dyadic grids is used to refine the mesh in each sequential optimization. Numerical 
simulation results indicate that the sequential technique is able to solve the Mars pin-
point landing problem accurately, with the optimal maximum–minimum–maximum throt-
tle profile captured exactly. Furthermore, the optimal solutions found by the sequential 
optimization technique are closed-loop solutions, so it is possible to code the technique 
on an onboard computer for practical landing guidance in the future.  
 
 
Acknowledgements 

 
The work described in this paper was supported partially by “the Fundamental 

Research Funds for the Central Universities”，NO. NS2016087. The authors greatly 

appreciate the above financial support.  
 
 
REFERENCES 
 
Braun, R. D., and Manning, R. M. (2007), “Mars Exploration Entry, Descent and Land-

ing Challenges,” Journal of Spacecraft and Rockets, 44(2), 310–323. 
Shen, H., Seywald, H. and Powel, R.W. (2010), “Desensitizing the minimum-fuel pow-

ered descent for mars pinpoint landing”, Journal of Guidance, Control, and Dynam-
ics, 33(1), 108-115. 

Ross, I. M., Gong, Q., and Sekhavat, P. (2007), “Low-thrust, high-accuracy trajectory 
optimization”, Journal of Guidance, Control, and Dynamics, 30(4), 921-933. 

Yan, H., Gong, Q., Park, C. D. et. al. (2011), “High-accuracy trajectory optimization for 
a trans-earth lunar mission”, Journal of Guidance, Control, and Dynamics, 34(4), 
1219-1227 

Jain, S. and Tsiotras, P. (2009), “Sequential Multiresolution Trajectory Optimization 
Schemes for Problems with Moving Targets”, Journal of Guidance, Control, and Dy-
namics 32(2), 488-499. 

 


