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ABSTRACT 
 

     In this study, the static and dynamic analyses of non-circular (conical, hyperboloidal, 
barrel) helicoidal bars having cruciform cross section are investigated via mixed finite 
element formulation. The torsional moment of inertia for cruciform section is calculated 
by finite element solution of Poisson's equation. Helicoidal rod domain is discretized 
with a two-noded curved element. Each node of the curved element has 12 degrees of 
freedom, and they are three translations, three rotations, two shear forces, one axial 
force, two bending moment and one torque. Timoshenko beam theory is used as field 
equations and exact curvatures at the nodal points are used by interpolation through 
the element via linear shape functions for generating the element matrix. In this study, 
non-circular helicoidal bars with fixed-fixed and fixed-free boundary conditions having 
thin and moderately thick cruciform cross-sections are handled. Through the analysis 
the influence of the cross-sectional geometry and the boundary conditions on the static 
and dynamic behavior of the non-circular helicoidal bars is investigated.  
 
1. INTRODUCTION 
 
     In the literature, the static and the dynamic analysis of the non-cylindrical helices 
with the circular and the rectangular cross-sections are available. In order to address 
these helix problems, various numerical methods were employed such as the finite 
element method (Mottershead 1980, Omurtag and Aköz 1992, Girgin 2006, Eratlı et al. 
2015), the transfer matrix method (Pearson 1982, Yıldırım 1996) which is the most 
popular ones. The transfer matrix method is applied to dynamic analysis of 
cylindrical/non-cylindrical helical springs besides finite element method with circular and 
rectangular cross-sections in Yıldırım and İnce (1997), Yıldırım (1997), Yıldırım (1998) 
and Yıldırım (2002). Busool and Eisenberger (2002) analyzed the free vibration of non-
cylindrical helicoidal bars with circular and rectangular variable cross-sections by using 
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the exact element method. Using the pseudospectral method Lee (2007) investigated 
the free vibration of non-cylindrical helical springs with circular cross-sections.  
     Geometry of the helicoidal bars lets them to be forced under considerable torque. 
Thus precise torsional rigidity of calculation of non-circular cross sections are very 
important in obtaining the results with necessary high precision. The exact value of 
torsional rigidity limited to a few cross sections like rectangular, ellipse and equilateral 
triangle (Timoshenko and Goodier 1969). To obtain analytical solutions for the arbitrary 
cross-sections are cumbersome. Therefore some numerical studies are performed to 
overcome this problem. The torsional rigidity problem was solved by the finite 
difference, finite element and boundary element methods (Ely and Zienkiewicz 1960, 
Wang 1953, Hermann 1965, Krahula and Lauterbach 1969, Darılmaz et al. 2007, Li et 
al. 2000, Eratlı et al. 2016, Sapountzakis 2001, Sapountzakis and Mokos 2004). 
     In this study, static and dynamic analysis of conical, barrel and hyperboloidal helices 
having cruciform cross-section are performed via the mixed finite element algorithm 
verified by Eratlı et al. (2016). This algorithm is based on the Timoshenko beam theory. 
The torsional rigidity of the cruciform cross-section is calculated by finite element 
solution of Poisson's equation. The displacement, rotation shear force, moment and the 
first six natural frequencies of non-circular helices are presented as an benchmark 
examples for the literature. 
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 Fig. 1 Non-circular helix geometries Fig. 2 Cruciform cross-section 

 
2. FORMULATION 
      
     2.1 Helix Geometry 
     The geometrical properties of the helices in Figure 1 are ( ) cosx R   , 

( ) siny R   , ( )z p   , ( ) ( ) tanp R   , where   denotes the pitch angle, ( )R   

and ( )p   signify the centerline radius and the step for unit angle, respectively, of the 

helix as a function of the horizontal angle  . With 2 2( ) ( ) ( )c R p    , the 

infinitesimal arc length becomes d ( ) ds c   . The Frenet unit vectors are as follows: t  

is the tangent unit vector, n  is the normal unit vector, b = t n  is the binormal unit 
vector. In the case of a conical helix, the radius at any point on the helix geometry is 

max min max
( ) ( )( 2 )R R R R n      where n  is the number of active turns, 

max
R  and 

min
R  

are the bottom radius and top radius, respectively, of the conical helix geometry and in 



  

the case of a barrel, the radius is 
2

max min max
( ) ( ) (1R R R R n       , 

min
R  and 

max
R  

are the bottom radius and the central radius, respectively or in the case of 

hyperboloidal helix, the radius is 
2

min max min
( ) ( ) (1R R R R n       , where 

max
R  and 

min
R  are the bottom radius and the central radius, respectively. 

 
     2.2 The field equations and the functional 
     The field equations based on Timoshenko beam theory for the elastic helix in the 
Frenet coordinate system exist in Eratlı et al. (2016). 
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where 
t n b
u u u  u t n b  is the displacement vector, 

t n b
    Ω t n b  is the 

rotational vector, 2 2/ t u = u  and 2 2/ t =   are the accelerations of the 

translations and rotations of the equation of motion, respectively. 
t n b
T T T  T t n b  is 

the force vector, 
t n b

M M M  M t n b  is the moment vector,   is the density of 

material, A  is the area of the cross-section, I  is the moment of inertia tensor, C  is the 
compliance matrix, q  and m  are the distributed external force vector and moment 

vector, respectively. Eqs. (1)-(2) can be written in operator form as  Q Ly f . After 

proving the operator to be potential, the functional yields to the following form  
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where   is the natural circular frequency and the square parentheses indicate the 
inner product. The terms with hats in Eq. (3) are known values on the boundary and the 
subscripts   and   represent the geometric and the dynamic boundary conditions, 
respectively. Considering the harmonic motion of the helix in the free vibration analysis, 
q  and m  are equal zero. 

 
     2.3 Finite Element Formulation of the Torsion Problem 
     By introducing scalar field function  , the governing equation for the torsion 
problem (Poisson's equation) is 

 
,11 ,22

2     (4) 



  

with 0   on  the boundary. Defining a vector field Ξ  on e  as  
T

,1 ,2,e e
i i   Ξ  

and using the divergence theorem the weak form of the Eq. (4) can be constructed as,  

  ,1 ,1 ,2 ,2 d 2 d de e e

e e e e e e e
i i i i   

  
            n  (5) 

The boundary terms in Eq. (5) cancel out during the assemblage of the finite element 
equations for adjacent element edges in the cross-section domain   and they are also 
zero on the free edges (edges without an adjacent element) to satisfy the boundary 
condition of the torsion problem. The torsional constant tI  of the cross-section, in terms 

of the scalar field, is expressed as, 

  ,1 1 ,2 2 dtI x x


       (6) 

which renders to the summation given with the following equation over domain 
elements as, 

       1T
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where    with the definition, 
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where  J (Jacobian matrix) is calculated with      J X  ,  X  being the nodal 

coordinates matrix, and Φ  is the vector with the scalar field nodal-values as its 
components. Integrations are performed with the 3 3 9   point Gauss quadrature rule. 

G   is the shear modulus and N  is the total number of elements. 

 
     2.4 Mixed Finite Element Formulation 
     Linear shape functions are ( ) /

i j
      and ( ) /

j i
      are used in finite 

element formulation. The subscripts represent node numbers of the bar element and 
( )

j i
     . The curvatures are satisfied exactly at the nodal points and linearly 

interpolated through the element. The curved bar element has two nodes with 212 
degrees of freedom. The variable vector per node is as follows: 

   { , , , , , , , , , , , }T

t n b t n b t n b t n b
u u u T T T M M M  X  (9) 

The problem of determining the natural frequencies of a structural system reduces to 

the solution of a standard eigenvalue problem     2[ ] [ ] K M u 0  where [ ]K  is the 

system matrix, [ ]M  is the mass matrix for the entire domain, u  is the eigenvector 

(mode shape) and   is the natural angular frequency of the system. Hence the explicit 
form of standard eigenvalue problem in the mixed formulation is 
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where { }F  denotes the nodal force and the moment vectors and { } = { }TU u Ω  signifies 

the nodal displacement and rotation vectors. To attain consistency between Eq. (10) 

and     2[ ] [ ] K M u 0 , the { }F  vector is eliminated in Eq. (10), which yields to the 

condensed system matrix * T 1[ ] [ ] [ ] [ ] [ ] 
22 12 11 12

K K K K K . Finally, the eigenvalue 

problem in the mixed formulation becomes    * 2[ ] [ ] K M U 0 . 

 
3. NUMERICAL EXAMPLES 
     
     The fixed-fixed and fixed-free boundary conditions are used. The material and 
geometric properties of the helices are: the modulus of elasticity 210GPaE  , 

Poisson's ratio 0.3  , the density of material 37850 kg/m  , the number of active 

turns 6.5n , the pitch angle 4.8   , the ratio of the minor radius to the major radius 

of the helix 
min max

/ 0.5R R   (where 
min

13mmR  ). The cruciform cross-section (see Fig. 

2) with two different thickness-to-side ratios / 1/ 5t a  and / 1/ 3t a  where 2 mma  is 

considered. Referring to these two different /t a  ratios, the computed torsional inertia 

moments are 40.00519
t
I a  and 40.02313

t
I a , respectively (Eratlı et al. 2016). In the 

static analysis, the helices are analyzed by considering that it is subjected to a 
uniformly distributed loading. The intensity of the uniform load is taken as 

0.01N/m
z
q  . As a result of a convergence analysis it is observed that 200 elements 

yield to necessary precision. 
 
     3.1 Dynamic Analysis 
     The scope of this example is to investigate the effects of the thickness-to-side ratios 
of the cruciform cross-section and the boundary conditions on the dynamic behavior of 
the non-circular helicoidal bars (barrel and conical helices). The material and 
geometrical properties of these helices are identical to the hyperboloidal helix solved in 
Eratlı et al. (2016). For the fixed-fixed and the fixed free boundary conditions, the first 
six natural frequency results of the barrel and conical helices having the cruciform 
cross-section are tabulated in Tables 1-2 where the first six natural frequencies are also 
verified with SAP2000. In the case of the fixed-fixed boundary condition, the increase of 
the fundamental natural frequency of the t/a=1/3 cross-section with respect to for the 
t/a=1/5 cross-section is 70% and 69% for both the barrel and the conical type helices, 
respectively. In the case of the fixed-free boundary condition, with respect to the 
fundamental natural frequency for the t/a=1/5 ratio, the results of t/a=1/3 ratio increased 
by 55% and 56% for the barrel and the conical type helices, respectively. When the 
influence of the boundary conditions is considered the fundamental natural frequencies 
of the fixed-free boundary condition decreased in the range of 62%~66% with respect 
to the fixed-fixed boundary condition (see Tables 1-2). When the fundamental natural 
frequencies of the barrel type helix are compared with the fundamental natural 



  

frequencies of the conical type helix, it is observed that, the percent increase is 
approximately 15% and 19% for both the fixed-fixed and the fixed-free boundary 
conditions, respectively. 
 
Table 1 The natural frequencies (Hz) of barrel type helix with the fixed-fixed and fixed-
free boundary conditions  

  /t a  
  1/5 1/3 
  This study SAP2000 diff.% This study SAP2000 diff.% 

fix
e

d
-f

ix
e

d
 1 20.9 21.0 -0.48 35.5 35.7 -0.56 

2 37.9 38.0 -0.26 53.8 53.9 -0.19 
3 39.2 39.2  0.00 56.6 56.8 -0.35 
4 39.8 40.0 -0.50 57.1 57.1  0.00 
5 50.7 50.9 -0.39 66.0 66.3 -0.45 
6 54.0 54.8 -1.48 90.0 92.1 -2.33 

fix
e

d
-f

re
e
 

1 7.7 7.7  0.00 11.9 12.0 -0.84 
2 7.9 7.9  0.00 12.1 12.1  0.00 
3 9.5 9.5  0.00 16.1 16.2 -0.62 
4 27.1 -  - 29.5 29.6 -0.34 
5 27.5 27.6 -0.36 45.9 - - 
6 28.8 28.9 -0.35 48.2 48.5 -0.62 

 diff.% = (This study-SAP2000)×100/This study) 
 
Table 2 The natural frequencies (Hz) of conical type helix with the fixed-fixed and fixed-
free boundary conditions 

  /t a  
  1/5 1/3 
  This study SAP2000 diff.% This study SAP2000 diff.% 

fix
e

d
-f

ix
e

d
 1 24.6 24.6  0.00 41.6 41.7 -0.24 

2 43.7 43.7  0.00 66.2 66.2  0.00 
3 47.8 47.9 -0.21 67.2 67.3 -0.15 
4 51.3 51.3  0.00 73.4 73.4  0.00 
5 65.7 65.7  0.00 81.2 81.3 -0.12 
6 67.5 67.6 -0.15 108.2 108.4 -0.18 

fix
e

d
-f

re
e
 

1 9.4 9.4  0.00 14.7 14.7  0.00 
2 9.8 9.9 -1.02 15.1 15.2 -0.66 
3 10.9 10.9  0.00 18.2 18.2  0.00 
4 30.0 - - 41.2 41.2  0.00 
5 34.4 34.4  0.00 50.6 - - 
6 38.5 38.5  0.00 57.6 57.7 -0.17 

 diff.% = (This study-SAP2000)×100/This study)



  

 
     3.2 Static Analysis 
     In the static analysis, the effects of the helix geometry, thickness-to-side ratios of the 
cruciform cross-section and the boundary conditions on the nodal variables are 
investigated. The maximum displacement ( zu ) and the maximum rotation ( z ), and, 

fixed end reactions ( zT : shear force, yM : moment) are used for the numerical 

comparisons. Finite element calculations are performed in Frenet coordinates and the 
results are transformed back to the global coordinates and they are verified with 
SAP2000 also. For the fixed-fixed and fixed-free boundary conditions, the results of the 
barrel, conical and hyperboloidal type helices are presented in Tables 3-5, respectively. 
When the maximum displacements of the conical and hyperboloidal helices are 
compared with the respective results of the barrel type helix, a reduction is observed. 
Comparison of the maximum displacements of the conical and hyperboloidal helices for 
the fixed-fixed boundary condition in Tables 4-5 with Table 3 for each t/a ratios reveal 
that the percent reductions in Tables 4-5 are approximately 29% and 41%, respectively. 
For the fixed-free boundary conditions, these percent reductions in Tables 4-5 are 
approximately 18% and 56%, respectively. The reduction of the maximum 
displacements of the t/a=1/3 cross-section with respect to for the t/a=1/5 cross-section 
is approximately 78% for all helix types and boundary conditions. When the maximum 
displacements of the fixed-fixed boundary condition are compared with respect to the 
results of the fixed-free boundary condition, the reductions are approximately 79%, 
81% and 71% for the barrel, the conical and the hyperboloidal type helices, 
respectively. 
 
Table 3 The displacements, rotations, forces and moments of barrel type helix with the 
fixed-fixed and fixed-free boundary conditions (see Fig. 1) 

 

max.  
displacements 

(×10-2 mm) 

max. 
rotations 

(×10-4 rad) 

shear force  
at point A 
(×10-2 N) 

moment  
at point A 
(×10-4 Nm) 

zu  z  zT  yM  

fix
e

d
-f

ix
e

d
 

/t a  

1/5 
This study -6.538 -2.250 0.4440 0.590 
SAP2000 -6.475 -2.240 0.4443 0.580 

diff.% 0.96 0.44 -0.07 1.69 

1/3 
This study -1.463 -0.408 0.4440 0.590 
SAP2000 -1.447 -0.400 0.4443 0.580 

diff.% 1.09 1.96 -0.07 1.69 

fix
e

d
-f

re
e
 

/t a  

1/5 
This study -30.31 -9.706 0.8880 1.160 
SAP2000 -30.03 -9.650 0.8886 1.160 

diff.% 0.92 0.58 -0.07 0.00 

1/3 
This study -6.813 -1.731 0.8880 1.160 
SAP2000 -6.740 -1.720 0.8886 1.160 

diff.% 1.07 0.64 -0.07 0.00 
 diff.% = (This study-SAP2000)×100/This study) 
 



  

 

Table 4 The displacements, rotations, forces and moments of conical type helix with the 
fixed-fixed and fixed-free boundary conditions (see Fig. 1) 

 

max.  
displacements 

(×10-2 mm) 

max. 
rotations 

(×10-4 rad) 

shear force  
at point A 
 (×10-2 N) 

moment  
at point A 

 (×10-4 Nm) 

zu  z  zT  yM  

fix
e

d
-f

ix
e

d
 

/t a  

1/5 
This study -4.644 -1.666 0.3223  0.800 
SAP2000 -4.630 -1.660 0.3224  0.810 

diff.% 0.30  0.36 -0.03 -1.25 

1/3 
This study -1.038 -0.309 0.3223  0.800 
SAP2000 -1.034 -0.310 0.3229  0.810 

diff.% 0.39 -0.32 -0.19 -1.25 

fi
xe

d
-f

re
e
 

/t a  

1/5 
This study -24.89 -7.813 0.7992  2.070 
SAP2000 -24.82 -7.800 0.7993  2.080 

diff.% 0.28 0.17 -0.01 -0.48 

1/3 
This study -5.590 -1.393 0.7992  2.070 
SAP2000 -5.568 -1.390 0.7993  2.080 

diff.% -0.39 0.22 -0.01 -0.48 
 diff.% = (This study-SAP2000)×100/This study) 
 
Table 5 The displacements, rotations, forces and moments of hyperboloidal type helix 
with the fixed-fixed and fixed-free boundary conditions (see Fig. 1) 

 

max.  
displacements 

(×10-2 mm) 

max. 
rotations 

(×10-4 rad) 

shear force  
at point A 
(×10-2 N) 

moment  
at point A 

 (×10-4 Nm) 

zu  z  zT  yM  

fix
e

d
-f

ix
e

d
 

/t a  

1/5 
This study -3.829 -1.362 0.3552  0.890 
SAP2000 -3.840 -1.360 0.3555  0.900 

diff.% -0.29 0.15 -0.08 -1.12 

1/3 
This study -0.863 -0.258 0.3552  0.890 
SAP2000 -0.864 -0.260 0.3555  0.900 

diff.% -0.12 -0.78 -0.08 -1.12 

fix
e

d
-f

re
e
 

/t a  

1/5 
This study -13.30 -4.990 0.7104  1.840 
SAP2000 -13.19 -5.000 0.7109  1.850 

diff.% 0.83 -0.20 -0.07 -0.54 

1/3 
This study -3.004 -0.890 0.7104  1.840 
SAP2000 -2.972 -0.890 0.7109  1.850 

diff.% 1.07 0.00 -0.07 -0.54 
 diff.% = (This study-SAP2000)×100/This study) 
 
4. CONCLUSIONS 
 
Static and dynamic analysis of barrel, conical and hyperboloidal helices having the 
cruciform cross-section is performed via the mixed finite element method. The finite 



  

element solutions are compared using the commercial program SAP2000 and its 
Section Designer module. The absolute percent differences between these finite 
element models is in range of 0-2.33% in the case of 1000 elements by SAP2000 and 
200 elements by the present mixed model. This difference is due to the used torsional 
rigidity of the cruciform cross-section, besides the straight SAP2000 elements and the 
curved elements of the present study. The compressed mesh is used to calculate the 
torsional inertia moment of the cruciform cross-section in the SAP2000 for t/a=1/5 and 
t/a=1/3 ratios and the calculated torsional inertia moments are compared with respect 
to our torsional inertia moments obtained in Eratlı et al. (2016). The absolute 
differences for the torsional inertia moments between SAP2000 and Eratlı et al. (2016) 
is approximately 0.20% and 0.37% for t/a=1/5 and t/a=1/3 ratios, respectively. Torsional 
rigidity of calculation of non-circular cross sections is very important in obtaining the 
results with a necessary high precision for the 3D problems. Thus, the thickness-to-side 
ratios of the cruciform cross-section and the boundary conditions on the static and the 
dynamic response of the non-circular helicoidal bars are discussed extensively. 
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