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ABSTRACT 
 
     The scope of this study is to investigate the dynamic viscoelastic response of a 
linear viscoelastic conical type helical rod having a circular cross-section via mixed 
finite element formulation in regards to the effects of viscoelastic material parameter. 
For this purpose, the proposed viscoelastic model exhibits a standard type of 
distortional behavior while having elastic Poisson's ratio. The material properties are 
accounted through the use of the correspondence principle in the formulation. Field 
equations are based on Timoshenko beam theory and the curvatures and arc length of 
helix geometry is directly taken into account in the finite element algorithm. The 
analysis is carried out in the Laplace space and the results are transformed back to 
time space numerically by Modified Durbin's algorithm. The viscoelastic conical type 
helical rod having fixed from both ends is subjected to the step type of uniformly 
distributed dynamic load. The effects of viscosity parameter on the dynamic analysis of 
linear viscoelastic conical type helical rod are investigated. 
 
 
1. INTRODUCTION 
 
     The viscoelastic behavior of the material has become more popular with the 
advances in technology. Viscoelastic materials are encountered in the application as 
automobile bumpers, dampers, and road construction, carbon nanotubes (CNTs), fiber, 
polymer multiscale composite beams Lewandowski and Lasecka-Plura (2016), 
viscoelastic soft dielectric elastomer generators Bortot et al. (2016). There are 
remarkable theoretical studies on viscoelastic materials such as Fung (1965), Flügge 
(1975), Christensen (1982).  
     There are numerous studies about the viscoelastic behaviors of beams (Chen and 
Lin 1982, Chen 1995, Wang et al. 1997, Kocatürk and Şimşek 2006a-b, Payette and 
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Reddy 2010, Martin 2016), however, a few studies about the viscoelastic behavior of 
helicoidal rods exist, in the literature. Temel (2004) and Temel et al. (2004) studied 
quasi-static and dynamic analysis of viscoelastic cylindrical helicoidal rods in the 
Laplace space, by using the complementary functions method and the ordinary 
differential equations based on the Timoshenko beam theory. By using the mixed finite 
element method, the dynamic behavior of viscoelastic helices based on the 
Timoshenko beam theory are investigated by Eratlı et al. (2014), Ermis (2015), Ermis et 
al. (2016). The curvatures and arc length  are satisfied exactly at the nodal points and 
linearly interpolated through the element (Eratlı et al. 2014), and, the study of Eratlı et 
al. (2014) are improved by considering the exact curvatures and arc length directly 
through the finite element formulation (Ermis 2015, Ermis et al. 2016).   
     In this study, the dynamic behavior of linear viscoelastic conical helicoidal rod with 
clamped at both ends subjected step type of uniformly distributed dynamic load is 
investigated by employing the mixed finite element method proposed in Ermis (2015) 
and Ermis et al. (2016). The field equations of the helicoidal rod are based on the 
Timoshenko assumptions. The viscoelastic material exhibits the standard type of 
distortional behavior while having elastic Poisson's ratio. The viscoelastic material 
constants are accounted by using the correspondence principle (Shames and Cozarelli 
1997), which states that the equations for viscoelastic case in the Laplace space may 
be obtained from those for elastic case by replacing the elastic constants by complex 
moduli according to the chosen viscoelastic model. The solution of the structural 
problem is carried out in the Laplace space. The results of the dynamic problem 
obtained in the Laplace space and are transformed back to the time domain 
numerically by means of the Modified Durbin's transformation algorithm (Dubner and 
Abate 1968, Durbin 1974, Narayanan 1980). In order to investigate the influence of 
viscosity parameter on the dynamic behavior of linear viscoelastic conical helicoidal rod 
having circular cross-section is handled and discussed in detail as a benchmark 
example.  
 
 
2. FORMULATION 
 
    2.1 The Helix Geometry 
 
   In the Cartesian coordinate system, the parameters of helical geometry can be  given 
as: ( )cosx R   , ( )siny R    and ( )z p   , where ( ) ( ) tanp R   , horizontal 

angle   and the pitch angle  . ( )p   defines the step for unit angle of the helix. With 

2 2( ) ( ) ( )c R p  = + , the infinitesimal arc length becomes d ( )ds c  = . The 

centerline radius of conical helix is defined max min max( ) ( ) 2    R R R R n  where  maxR , 

minR  are the bottom and top radii of the helix, and n  is the number of active turns, 

respectively.  
 
     2.2 The Field Equations in the Laplace Space 
 



  

   In the Laplace space, the field equations based on the Timoshenko beam theory can 
be given as follows (Eratlı et al. 2014): 
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where comma as a subscript under the variable designates the differentiation with 
respect to s , z  is the Laplace transformation parameter, and, the Laplace transformed 

variables are denoted by the over bars. Using the Frenet coordinate system in  Eq.(1), 
 

the displacement vector, the rotation vector, the force vector and the the moment vector 

are given
 t n bu u u  u t n b , t n b    Ω t n b , t n bT T T  T t n b , 

t n bM M M  M t n b , respectively. q  and m  are the distributed external force and 

moment vectors, C  and C  are the compliance matrices.   is the density of material, 

A  is the area of the cross section, t n bI I I  I t n b  is the moment of inertia of the 

cross section (Eratlı et al. 2014). 
 
    2.3 The Functional in the Laplace Space 
 
    The field equations in Eq. (1) are written in operator form Q = Ly - f . After proving 

this operator to be potential, the functional of the structural problem is obtained in the 
Laplace space as follows: 
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    In Eq. (2), the subscripts   and  , represent the geometric and dynamic boundary 

conditions, respectively, and, the terms with hats in Eq. (2) define the known values on 
the boundary. The details of the variational formulation and functional exist in Eratlı et 
al. (2014). 
 
    2.4 Mixed Finite Element Formulation 
 
    A two-noded curvilinear elements is used to discretize the helicoidal rods. Linear 

shape functions ( ) /i j       and ( ) /j i       are employed where 

( )j i      and the curvature ( )  , the torsion ( )   and arc length ( )c   of 

helicoidal geometry is directly taken into account in the mixed finite element formulation 
(Ermis 2015, Ermis et al. 2016). Each node has 12 degrees of freedom namely, 

{ , , , }u T M . 



  

    2.5 The Standard Model 
 

 
Fig. 1 Standard model 

 
    When the viscoelastic material exhibits the standard type of distortional behavior 
(see Fig. 1), then the complex shear modulus can be expressed in the following form 
(Mengi and Argeso 2006, Baranoğlu and Mengi 2006) 
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G

r  is the retardation time of relaxation function associated with the shear modulus G , 

the damping parameter G , and the ratio of the instantaneous value of relaxation 

function to the equilibrium value of relaxation function G  (Eratlı et al. 2014). By using 

Eqns (4) and (6) can be defined as below:  
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     The graphical representation of the variation of 2( ) / 1  G G  coefficient versus  G  

is obtained as shown in Fig. 2. 
 



  

 
Fig. 2 2( ) / 1  G G  coefficient 

 
 

 
 

Fig. 3 The conical helicoidal rod having circular cross-section. 
 
 
3. NUMERICAL EXAMPLES 
 
     A viscoelastic conical helicoidal rod with fixed-fixed boundary condition is solved 
(see Fig. 3). The helix geometry has 5.5n   number of active turns, the height of the 

rod is 5mH  and the minimum radius of helix to maximum of helix ratios 

min max/ 0.5R R   where max 2mR  . The circular cross-sectional diameter of the rod is 

20cmD . The viscoelastic material exhibits the standard type of distortional behavior 

while having elastic Poisson’s ratio 0.3   . The material parameters are 80GPaG , 

0.01s G
r , 1.1,1.5, 2.0, 3.0,11.0 G  and the density of material 37850 kg/m  . The 

form of the complex shear modulus can be obtained by using Eq. (3). The rod is 

subjected to a dynamic rectangular impulsive type of uniformly distributed load ( )zq q t , 

where 500 N/moq  (see Fig. 3). The quasi-static and dynamic responses of the rod are 

determined within 0 10s t . The analyses are carried out in the Laplace space and 

the results are transformed back to the time space numerically by modified Durbin's 
algorithms (Dubner and Abate 1968, Durbin 1974, Narayanan 1980). The parameters 

which are used in the analysis for inverse Laplace transformation algorithm are 112N   

and 6aT   which are verified by Eratlı et al. (2014). 



  

     The vertical displacements zu  at the middle point of the helicoidal rod, the force 
zT  

the moments yM  at the clamped end A (see Fig. 1) are determined using 100 finite 

elements through the analysis. The time variation curves of 
zu , 

zT , and yM  are 

depicted for 1.1,1.5, 2.0G   and  2.0, 3.0,11.0G   ratios in Figs. 4-5, respectively. The 

aim of these figures is to investigate the influence of viscoelastic material parameter 

G  on the dynamic response of viscoelastic conical helicoidal rod. For the same values 

of G

r retardation time, viscosity parameter G , and shear modulus G , there exist two 

different G  ratios, except 2 G  that is a transition value (
1 2G G ). One of these G  

ratios is between 1 2 G  (
1 2G G ) and the another one is 2 G  (

1 2G G ) (see Fig. 

2 ). 
1 2,G G  values are related to viscosity part and elastic part of the standard model 

type viscoelastic material. In Figs. 4-5, the dashed, the dot and the solid lines are used 

for 1.5,3.0 G ,  1.1,11.0 G  and 2 G  ratios, respectively. The responses curves of 

2 G  values is lowest contour 1.1,1.5 G  (see Fig. 4), whereas is highest contour 

3.0,11.0 G  (see Fig. 5). The amplitudes of zu , 
zT , and yM  (see Figs.4-5) decrease 

with the increasing G  ratios, and approach to the quasi static case. When the 

amplitude of curves are compared Fig. 5 with respect to Fig. 4, it is observed that the 

amplitudes for 2 G  values dissipate more rapidly.  

 

 
(a) zu  

 
(b) zT  



  

 
(c) yM  

Fig. 4 Time histories of viscoelastic conical helicoidal rod for 1.1,1.5,2.0 G   

 

 
(a) zu  

 
(b) zT  

 
(c) yM  

Fig. 5 Time histories of viscoelastic conical helicoidal rod for 2.0,3.0,11.0 G  



  

4. CONCLUSION 
 
     The dynamic viscoelastic behavior under the step type of uniformly distributed 

dynamic load of conical helicoidal rod is examined for different viscosity parameter G  

ratio via the mixed finite element method. For this purpose, the viscoelastic material 
behavior is simulated by using the standard model while having elastic Poisson's ratio 
and the viscoelastic properties are accounted using the correspondence principle. The 
finite element solutions are carried out in the Laplace space. The results obtained in the 
Laplace space are transformed back to time space via modified Durbin's algorithm. The 

effects of the viscoelastic material parameter G  ratios on the dynamic behavior of the 

conical helix are discussed extensively. 
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