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ABSTRACT 
 

     This study proposes an active control method to reduce seismic vibrations of a 
soil-structure interaction system. The proposed control technique is a synthesis of the 
adaptive input estimation method (AIEM) and the linear quadratic Gaussian (LQG) 
controller. The AIEM can estimate online the unknown input and optimal states by 
measuring the dynamic displacement, the optimal estimated states into the feedback 
control; thereby optimal control forces to reduce vibrations of a soil-structure interaction 
system. Active vibration control of a soil-structure interaction (SSI) system is performed 
to verify the feasibility and effectiveness of the proposed algorithm. The simulation 
results demonstrate that the proposed method is more efficiently than the conventional 
LQG method. 
 
 
1. INTRODUCTION 
 
     Recent many strong earthquake disasters have occurred all around the world, 
causing heavy casualties and property loss. Earthquake-resistant technique is very 
important part in the structure design. During the two last decades, passive and active 
controls of civil engineering structures have been rapidly developed in the earthquake 
engineering field. Passive techniques are normally performed by devices known as 
absorbers or isolators. (Chaudhary 2001) have identified the structural and 
geotechnical parameters of four base-isolated bridges using available theoretical 
models and data from recent earthquakes. (Liang 2002) proposed a method for 
habitability analysis of base-isolated buildings under fluctuating wind loads in the time 
domain. (Spyrakos 2002) and (Vlassis 2001) performed analytical studies of SSI effects 
on the longitudinal response of base-isolated bridge piers. (Sarrazin 2005) proposed 
the response of base-isolated bridges for ambient vibration tests and earthquake 
excitations in Chile. (Spyrakos 2009) investigated the effect of SSI on the response of 
base-isolated buildings. In terms of passive control technique, the unwanted vibration 
problem can be effectively solved using passive control techniques. 
     In general, active control technique are designed on the Linear Quadratic 
Regulator (LQR) and LQG theory or H-infinite control theory. Optimal LQR controllers 
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have been developed and used in practical implementations (Pourzeynali 2007, 
Gabbert 2002, Aldawod 2001). Yang (1975) applied the optimal control theorem to 
control the vibrations of civil engineering structures under stochastic dynamic loads 
such as earthquakes and wind loads. The traditional optimal controller  has difficulty 
maintaining robust control performance while the external load influence is not 
considered in the optimal controller design. 
     This study is to investigate the active control technique application to reduce the 
SSI response when subjected to earthquake excitation. a synthesis of the AIEM 
algorithm and LQG controller was proposed in the active control technique. The 
traditional LQG controller was applied and the performances were compared. Proposed 
the active LQG controller can apply the same inverse control forces on a structural 
system in the control procedure. The proposed method control results are effective in 
suppressing vibration in a SSI system  
 
 
2. SMART SOIL-STRUCTURE INTERACTION MODEL 
 
     The simulated model is shown in Fig. 1. The active control of a seismic soil-
structure interaction system movement equation can be written as follows (Wang 2009): 

     ( ) ( )gM X C X K X M x t D F t                                               (1) 

where M  is the diagonal mass matrix, C  is the damping matrix and K  is the 

restoring force vector. ( )gx t  is the ground motion acceleration. D  is the control force 

distribution matrix, ( )F t  is the control force vector. X , X  and X is the 

displacements, velocities and accelerations, respectively. 
The continuous-time measurement equation is shown below: 

     ( ) ( ) ( ) ,Z t H X t v t                                                        (2) 
where ( )Z t  is the observation vector, H  is the measurement matrix and ( )v t is the 

measurement noise.  
The continuous-time state equation of the structural system equation is presented as 
follows (Tuan 1996): 

     ( ) ( ) ( ) ( ) ,X t A X t B G t E F t                                                (3) 

where 
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where ( )X t  is the modal state vector. A  is the coefficient matrix. ( )F t  is the control 

force inputs. B and E  are the coefficient vectors of ( )G t  and ( )F t , respectively. Using 

the sampling time, t , to sample the continuous-time state Eq. (3) and assuming that 

the system model error, ( ) lim
x

w k


is Gaussian white noise with zero mean, the discrete-

time equation can be obtained as follows (Tuan 1996). 



  

     ( 1 ) ( ) ( ) ( ) ( )X k X k G k F k w k                                              (4) 
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where   is the state transition matrix.   and  are the coefficient matrices of ( )G k  

and ( )F k , respectively. ( )G k  is the certain input array. ( )F k  is the control array. The 

discrete-time measurement equation of Eq. (2) is shown below: 

     ( ) ( ) ( )Z k H X k v k                                                       (5) 
( )Z k is the discrete observation vector. ( )v k  represents the measurement noise vector 

and is assumed as the Gaussian white noise with zero mean and the variance, 

 ( ) ( )T

kjE v k v k R , 2 2v n nR R I   , R  is the discrete-time measurement noise 

covariance matrix. 
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Fig. 1 The active control of a smart soil-structure interaction model 
 
     For standard linear quadratic Gaussian problems, the system under control is 
assumed to be described by the stochastic discrete-time state space equations as 
below (Lewis 1972): 

     ( 1) ( 1)( ) ( 1)X X F k w kk k                                           (6) 
where ( )w k  is zero-mean white noises with variances Q . The input forces sequence 

( )F k  are neglected or assumed to be zeros in the conventional LQG controller design. 

From Eq. (6), the conventional LQG control methodology for a system without input 
forces term is obvious. That is to say, Eq. (6) is not satisfactory for modeling most 
dynamic structures because there are usually external excitation forces. We therefore 
considered the case where the input forces are not zeros, i.e., Eq. (4) and (5). However, 
the conventional LQG control methodology is not applicable to structures without 
neglecting the input disturbance forces, because the entire input dynamic loads 



  

histories are not known a priori. This study proposes combining the AIEM with the LQG 
control technique for SSI system active vibration control to resolve this situation. The 
AIEM can estimate the unknown dynamic inputs while the active LQG controller can 
apply the same inverse control forces on the structural system.The combination of 
AIEM and the LQG controller is illustrated in Fig. 2. 
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Fig. 2 Flowchart of the AIEM combined with the LQG. 
 
 
3. CASE STUDY 
 
     The simulated case model is shown in Fig. 1. A 5-story building founded on a 
semi-infinite foundation was used for simulations. The soil was simulated using the 
lumped parameters developed fallowing section. The experimental structure can also 
be idealized into mass blocks, springs and dashpots. The foundation associated 
parameters in Eq. (1) have the following relationship with unified mass, damping and 
stiffness: 

     *

f i f e f im M m  ; *

fi fe fic C c  ; *

fi fe fik K k                                     (7) 

where feM , feC  and feK  are the unified mass, damping and stiffness, respectively. In 
the case of a strip footing on the elastic foundation, the unified parameters can be 
calculated according to the following formulas [Wolf 1985]: 

     
2

fe s sK K c  ; 0
fe s

s

r
C K

c
 ; 

2

0
fe s

s

r
M K

c

 
  

 
                               (8) 

where sK  is the static stiffness, sC  is the shear wave velocity of soil and 0r  is the 
characteristic length of the foundation. The dynamic-stiffness coefficient of the lumped 
parameter model is defined and determined using eight parameters: * *

1 3f fm c . Based 
on the dynamic stiffness coefficient as developed by (Oien 1971), the eight parameters 



  

in this lumped parameter model can be obtained through multiple regression analysis. 
Table 1 shows the eight coefficients obtained through multiple regression analysis. 
 

Table 1. The parameters of the lumped parameter model 
*

1fm
 

*

2fm
 

*

1fk
 

*

2fk
 

*

3fk
 

*

1fc
 

*

2fc
 

*

3fc
 

0.035 0.150 1.423 0.716 -0.202 1.724 0.126 0.815 

  

     The structure has the following properties: the story mass 4

1~5 5.28 10m kg  , the 

stiffness 7

1~5 5.46 10 /k N m  , and damping 5

1~5 1.47 10 /c Ns m  . The structure is built 

on the surface of a semi-infinite soil foundation with a Poisson's ratio 1/3  and a mass 

density 32000 /kg m  . To consider the soil foundation stiffness effect, the shear wave 

velocity, 200 /sc m s  is adopted for soft soil foundation. Substituting the parameters 

into equation (3), the unified mass, stiffness, and damping of the lumped parameter 

model can be calculated as follows: 82.513 10 /feK N m  , 73.016 10 /feC Ns m   and 

63.619 10feM kg  . To further verify that the presented method is feasible for vibration 

control, we consider the EI CENTRO earthquake. The time histories of the responses 
for a soil-structure interaction system with and without control are shown in Figs. 3 and 
4. The conventional LQG controller has the issue that the unknown input cannot be 
obtained and the control reaction is slower. The AIEM estimates the unknown input in 
on-line and combined with the LQG controller (which computes the optimal control 
force) can be used to obtain better results. 
 

 
Fig. 3 Comparison of 3th floor displacement control caused by the EI CENTRO 

earthquake. 
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Fig. 4 Comparison of 5th floor displacement control caused by the EI CENTRO 

earthquake. 
 
 
4. CONCLUSIONS 
 
     An active control technique was proposed for active ground motion acceleration 
control in a smart soil-structure interaction system. This active control technique 
demonstrated excellent performance by solving the earthquake-excitation control 
problem. The simulation results demonstrate that this technique has better active 
vibration control than the conventional LQG controller. In addition, this technique is 
effective and useful for active vibration control of a soil-structure interaction system. 
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