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ABSTRACT 
 

     In this article a novel meta-heuristic is proposed based on the concept of duality 
in nature. Many real world creatures apply this concept since they are found in couples: 
i.e. families of male and female with their children. Males are usually powerful in some 
features that females are weak in them and vice versa. Perfect performance of such a 
couple is dominated by cooperation of both these dual individuals. The present method 
applies this concept by subdividing the population of search agents into the primary 
individuals and their duals. Dual of an individual is determined by a fitness ranking 
procedure. A simple and efficient algorithm is thus proposed utilizing special 
movements of the artificial couples to search the design space. Several features of the 
proposed Duality Search including its memory-less structure, robustness and efficiency 
in different search spaces without intrinsic parameter tuning has made it very 
competitive to some other literature methods. A variety of problems including different 
test functions and engineering examples are treated to illustrate performance of the 
proposed method in global optimization. 
 
Keywords: duality search, meta-heuristic, global optimization, diversity measure 
 
1. INTRODUCTION 
 
     Many real-world applications require finding their best solution in the form of 
optimization problems. In this regard, zero-order optimization methods have received 
considerable attention as they do not require evaluating and approximating gradient of 
the objective function (Arora, 2004). Most of the meta-heuristic algorithms fall in this 
category as general-purpose optimization tools for various fields of engineering 
problems (Yang et al. 2012).  They usually simulate some cultural, biological or 
physical phenomena in nature in order to achieve optimal solution; within a practical 
time (Kaveh, 2014; Yang, 2013).  
     The need to search for global optima in the non-convex, multi-modal and 
constrained design spaces has raised several attempts to develop new algorithms 
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which can work in continuous and discrete problems with different complexities.  Some 
of the most recent ones are PDS (Shahrouzi, 2011a), GBMO (Abdeshiri et al. 2013), 
RMO (Rahmani and Rubiyah, 2014), WWO (Zheng, 2015), DFO (Shahrouzi and Kaveh, 
2015), ALO (Mirjalili, 2015), CSA (Akbarzadeh, 2016) and TWO (Kaveh and Zolghadr, 
2016). Among them, population-based methods are generally more powerful than 
single-agent ones in global search.  

Parameter tuning is a challenge in practical application of many meta-heuristic 
algorithms. Due to no-free-lunch theory (Wolpert and Macready, 2005), such 
parameters should be re-tuned for every other problem to truly achieve its best 
performance. The tuning process is usually performed via several trial runs with the 
charge of extra computational effort for implementation of an algorithm to efficiently 
seek global optimum and to avoid premature convergence. Therefore, fewer control 
parameters is more interesting from practical point of view. Some recent attempts have 
addressed this matter including CBO (Kaveh and Mahdavi, 2014, 2015), TWO (Kaveh 
and Zolghadr, 2016), CSA (Akbarzadeh, 2016), and TLBO (Rao et al. 2011, Rao and 
Patel, 2013). The most successful attempts have no intrinsic parameters rather than 
population size and number of iterations (Rao, 2016).  
     The present work introduces a new parameter-less meta-heuristic called Duality 
Search, DS. It applies a duality difference between capabilities of such males from 
females in the fitness scope. Consequently, the population of search agents is 
subdivided to primary individuals and their duals. The main algorithm steps rely on 
special dual walks toward better positions. The method has also stimulated a child 
individual that shares features of its parents in the corresponding family unit. A number 
of illustrative examples are treated to evaluate performance of the proposed method via 
comparison with some other well-known meta-heuristics. 
 
2. DUALITY SEARCH CONCEPTS  
 
     Many creatures in the real-world are divided into male and female types. These 
two can be considered dual to each other based on their different capabilities in a 
specific feature. For example, male agents are usually more powerful in hard-working 
and competition with the others. In the other hand, females are more capable for child 
treatment than males. Survival of the species in the nature is preserved by cooperative 
action of males and females in couples rather than by single action of each. Every such 
a couple is called a family unit including one male and one female.  
     The idea is extended here to develop an efficient yet simple optimization method 
called Duality Search. In the DS terminology, artificial individuals in a population of 
search agents are subdivided into primary ones and their duals. Such a duality is 
defined using the fitness rank of agents so that the fittest member of the population is 
taken dual to the least fit one. Setting aside these two from the current group of 
individuals, another couple of duals is identified in the same way and the process is 
repeated until no further individual is remained for the last set. The population size is 
essentially even in this process so that finally it can be divided into 2 subpopulations; i.e. 
primary and dual.  
     Another concept is difference of walk types in the search space for an individual 
with its dual. In a single walk, either a primary individual or its dual (not both) can move 



  

toward a specific position; e.g. the fittest location that has already found by the 
algorithm. Besides, when an individual is fitter than its dual they can get farther from 
each other.  
     Note that the recent definition of duality uses fitness ranking and differs from 
definitions in the opposition-based algorithms which apply design variables’ scope 
(Tizhoosh, 2005; Rahnamayan et al.  2008; Han and He, 2007). Another feature is 
property sharing between a primary individual and its dual by a third type of search 
agent called a child. Such a child provides extra direction of movement in addition to 
those revealed either by the primary or dual agents. This idea simulates crossover 
between chromosomes in the Evolutionary Algorithms (Back, 1996; He and Wang, 
2007; Shahrouzi, 2011a), however, its combination with dual walks is a special feature 
of the proposed DS. In addition, the generated child is not added to the next population 
so that population size remains fixed during iterations of the search. The present 
method does not require any auxiliary memory of the previous individuals.  
     Since the current study aims to find the best objective function, the 
aforementioned walks are designated regarding the best position already found as a 
member of the current population. Such movements are similar to that in the Differential 
Evolution, (Price et al., 2005).  As the present method uses fitness-based ranking in 
order to distinguish couple of dual agents it is expected that when a primary individual 
move from its position, its dual is simultaneously changed. Hence, search walks in any 
iteration are only performed for either primary or dual subpopulation rather than for the 
entire population. As can be realized further, this special feature has provided extra 
computational efficiency for DS.   
 
3. A DUALITY SEARCH ALGORITHM 
 
     Regarding the aforementioned concepts, a DS algorithm is introduced for the 
fitness maximizing problem via the following steps: 
 
3.1 Initiation 

Set the number of total individuals as the prescribed PopSize . Randomly generate the 

entire population of individuals and evaluate their fitness. 
 
3.2 Selection of subpopulation 
 

Sort the population in ascending order of fitness and identify the fittest individual GbestX

as the global best solution. Then determine the index of dual for each individual using 
the following relation. 
 

1 ,iDualInd PopSize i   (1)  

 
Divide the entire population into primary and dual subpopulations. Choose either 
primary or dual subpopulation to modify positions of their individuals.  
 
3.3 Inner Loop 



  

Repeat the following steps for every ith individual iX  and its dual
D

iX , in the selected 

subpopulation. 
 
3.3.1 Duality-based walk 

Choose either iX  or its dual
D

iX
 
and initiate the search direction to move the 

individual:  
 

1 ,Gbest

iS X Y  (2)  

 
Introduce additional moving direction by:  
 

2 ,D

i iS X X  (3)  

 
3.3.2 Walk toward the Child 

For each couple produce their child
Ch

iX . It can be generated by a uniform crossover 

over the parents that are dual of each other. Identify an extra direction vector as:  
 

3 ,Child

iS X Y  (4)  

 
3.3.3 Selection and replacement 
Generate the candidate solution and evaluate its fitness. 
 

,Cand

i i iX X V  (5)  

 

iV  is the velocity vector constructed by vector-sum of each walk direction after its 

production by a random generator. Replace the individual iX  with 
Cand

iX  if such a 

candidate is fitter than the current individual. 
 
3.4 Termination or repeat the outer loop 
Go back to step 2 and repeat until termination criterion is satisfied. Termination may 
occur when sum of velocity norms in the current active subpopulation tends to zero; 
that means no further movement of individuals will occur from their last positions. 
However, an alternate termination criterion is more common: to repeat until the iteration 

number reaches a prescribed value maxIter .  

3.5 Results announcement 

At this final step, announce the updated GbestX  as the optimum. Fig.1 reveals 

pseudo-code of the proposed DS. Since GbestX  is updated as a member of every 
population no extra memory is needed to save it. 

 
 



  

4. ILLUSTRATIVE EXAMPLES  
 
     Some examples of unimodal and multimodal test functions (Yang, 2010) are 
selected for illustrative purposes. The results are treated by DS and also compared with 
two other meta-heuristics; Particle Swarm Optimization, PSO (Kennedy and Eberhart, 
2001) and Teaching-Learning-based-Optimization, TLBO. PSO is widely used in many 
engineering applications and has a very simple algorithmic structure. As the second 
method, TLBO is selected due to its parameter-less structure (Rao, 2014). For the sake 
of true comparison in each case, the initial population and the number of iterations is 

taken similar. All the algorithms are run with the same PopSize  of 10 which is a 

relatively small number to test their capability in searching with such a few agents. 
However, the number of objective function evaluations is taken the base of comparison 
in the fitness view.  

     Other control parameters of PSO are taken 1, 2Inertial Cognitive SocialC C C   ; 

implemented by the following relation: 
 

( ) ( ),new Pbest Gbest

i Inertial i Cognitive i Social iV C V rand C X X rand C X X       (6)  

 

     Applying termination criterion of DS as 
i

i

V   the resulted number of 

iterations for each example are derived and used to run PSO and TLBO, as well.  

The proposed TLBO is implemented with an elitist strategy which saves the global best 
individual during the search by an auxiliary memory. As TLBO has no intrinsic 
parameters; it is run just with the same initial population and number of iterations as DS. 

     Regarding diversity variation as the search progresses, trace of 
i

i

V is drawn 

to study behavior of the treated algorithms. In addition, total CPU time on the same 
platform is compared between the treated methods to evaluate their computational 
efficiency. 

Test function minimization is transformed here to a fitness maximizing problem:  
 

1

( ) ( ),

,..., , LB UB

n j

Maximize Fitness X f X

X x x x x x

 

   
(7)  

 
Prior to fitness evaluation, each variable of the design vector is forced to fall between 

,LB UBx x as its lower and upper bounds, respectively.  

 

min(max( , ), ),LB UB

i ix x x x (8)  

 



  

The number of design variables n  is taken 2 in the following examples for illustrative 

purposes. 
 

 

Fig.1 Pseudo-code of the proposed DS algorithm 
 
 
4.1 Test problem 1: sphere function 
Minimizing this benchmark is selected as an example of a convex unimodal problem. It 
is defined by the following relation: 
 

2

1

( ) ,
n

j

j

f X x


 (9)  

 

Whereas feasible hyper-cube is limited to 5.12, 5.12LB UBx x   . It has no local optima 

but one global minimum obviously located at the origin:
 

* 0X   resulting in
* 0f   . 

     Performance of DS is compared with PSO in Fig.3. According to the Pseudo-code 
of Fig.1, the number of fitness evaluation calls in every iteration of PSO is twice that of 
DS. Therefore, true comparison of convergence should be performed via function calls. 



  

As depicted in Fig.3a, it can be realized that DS convergence is competitive to PSO 

using the same initial population and consequent starting elite fitness. Applying 0.1  , 

the proposed DS could achieve 
*( ) 0.000002849f X   within only 56 iterations. It is 

while PSO obtained
*( ) 0.005237058f X  . The reason is declared when comparing 

diversity trace of these methods. Fig.3b shows that despite PSO, DS has successfully 

reduced i

i

V  to refine its search toward optimum in this convex example.   

 

 

Fig.2 Sphere test function  
 
 

     According to Fig.4, TLBO has more rapid iteration-wise decrease in the diversity 
than DS; however, the proposed method has overridden its convergence curve in early 
function calls. In another word, DS has shown proper balance between intensification 

and diversification in this example. Note that TLBO applies 2 #PopSize iterations   

fitness evaluations while this number is #PopSize iterations  for PSO and 

1 #
2

PopSize iterations  for DS. Therefore DS is expected to be the most efficient 

among these methods.  
     The matter is confirmed regarding elapsed time of the algorithms in every 
comparative run for a couple of methods. According to Fig3.c, the percentage of 
computational time in a single run is distributed as 40% for DS and 60% for PSO. This 
ratio is more sever in Fig.4c as 23% for DS vs. 77% for TLBO. While the number of 
function calls in the same iteration for DS is 25% of TLBO and 50% of PSO, the recent 
results of Fig.3c and Fig.4c, give extra information about time complexity of the 
algorithms.  
 



  

 
(a) 

 
(b) 

 
(c) 

Fig.3 Comparison of DS with PSO: (a) fitness (b) diversity and (c) computational time 
percentage for the sphere function 
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(a) 

 
(b) 

 
(c) 

Fig.4 Comparison of DS with TLBO: (a) fitness (b) diversity and (c) computational time 
percentage for the sphere function 
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Fig.5 Shubert’s test function  
 

4.2 Test problem 2: Shubert’s function 
     The previous tests are repeated here treating an example of a complex 
multimodal benchmark with several local optima and 18 global optima as depicted in 
Fig.5. It is defined by the following relation: 
 

5

1 1

( ) (cos[( 1) )],
n

j

j k

f X k k x k
 

   (10)  

 

     The variable limits are taken 5.12, 5.12LB UBx x   . Value of the Shubert’s 

function at its global optima is the same as
* 186.7309088f    (Karimi and Siarry, 2012).  

Applying the same threshold of 0.1   as the termination criterion, number of 
iterations is raised by DS to more than 3 times than the previous example.  
     Besides, according to Fig.6 and Fig.7 it is realized that trend of diversity decrease 
with iteration has got slower. Note that this example has several local and global optima 
and is more complex than the previous convex function. It is evident from Fig.6 that 
despite DS, the employed PSO has not been successful in diversity balance as the 
search progresses; because it has led to premature convergence. PSO has achieved 

183.9098f     which is quite different from global optimum captured by DS as
* 186.73091f   . 

In another word, DS has better capability of escaping from local optima in such a 
complex design space with respect to PSO. According to Fig6.c and Fig3.c, the time 
complexity ratio is slightly altered with respect to previous example from 40% to 37% 
comparing DS over PSO time. 



  

 

 
(a) 

 
(b) 

 
(c) 

Fig.6 Comparison of DS with PSO: (a) fitness (b) diversity and (c) computational time 
percentage for the Shubert’s function 

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

160

180

200

Function Calls

 B
e
s
tS

o
F

a
r 

F
it
n
e
s
s
 

 Shubert

DS

PSO

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

Iteration

 S
u
m

 o
f 

V
e
lo

c
it
y
 N

o
rm

 

 Shubert

DS

PSO

63%

 Shubert

37%



  

 

 
(a) 

 
(b) 

 
(c) 

Fig.7 Comparison of DS with TLBO: (a) fitness (b) diversity and (c) computational time 
percentage for the Shubert’s function 
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     Regarding Fig.7a, DS has again shown comparable convergence with TLBO in 

obtaining final value of
* 186.73091f   , in optimizing this multimodal function. DS has 

captured such a global optimum by 2015 function calls via 402 iterations. TLBO has 
achieved it within 183 iterations but by 3650 fitness evaluations. Comparison of the 
total elapsed time up to total 548 iterations, declares time complexity of DS is 21% of 
TLBO. Hence, it is concluded that DS is not only robust but also efficient in capturing 
global optima in such a complex multimodal search space. 

 

Fig.8 Langermann’s test function 
 
4.3 Test problem 3: Langermann’s function 
This example is a sample of a non-convex function with an asymmetric multimodal 
design space, defined by the following Langermann’s function (Fig.8): 
 

 
25

2

1 1

( )
( ) exp cos ( ) ,

n
i ij

j i ij

j i

x a
f X c x a

 

 
      

 
  (11)  

 
The fixed parameters are given by:

  

3 5 2 1 7
, C 1 2 5 2 3 ,

5 2 1 4 9

T

TA
 

   
 

(12)  

 

Limits on the variables are set to 0, 10LB UBx x  . According to Fig.9a, DS can exhibit 

stable convergence toward optimum without premature convergence. The reason is 



  

behind proper robustness of DS by keeping more diversity than TLBO during early 
iterations of the search in such a complex problem (See Fig.9b).  

 
(a) 

 
(b) 

 
(c) 

Fig.9 Comparison of DS with TLBO: (a) fitness (b) diversity and (c) computational time 
percentage for the Langermann’s function 
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     In this example DS could capture the optimum of (2.7934,1.5972) 4.1558f   by 19% 

total time of TLBO which resulted in (1.4165, 1.7991) 4.1009f    after 1000 iterations.  

 

 
(a) 

 
(b) 

Fig.10 (a) The structural model and (b) design space of the 3-bar truss problem 
 

 
4.4 Test problem 4: 3-bar truss design  
     This is an example of a constrained engineering problem that is chosen because 
its design space is illustratable (Shahrouzi and Kaveh, 2015). It has only 2 design 

variables 1 2( , )X x x as section areas of the truss members, shown in Fig.10a. The 



  

objective is to minimize material consumption subjected to structural behaviour 
constraints where design variables are limited with in [0,1] domain. The problem is 

formulated as follows with fixed parameters of 100l cm , 22 /kN cm   and 2P kN  

as the vertical load:  
 

1 2( ) (2 2 ),Minimize f X l x x   (13)  

 

1 2
1 2

1 1 2

2
0

2 2

Subject to

x x
g P

x x x



  


  (14)  

2
2 2

1 1 2

0
2 2

x
g P

x x x
  


 (15)  

 

3

1 2

1
0

2
g P

x x
  


    (16)  

It is treated in the following unconstrained form. The penalty coefficient of 50pk  is 

employed in this study. 
3

1

( ) ( ) (1 max(0,g ( ))),p i

i

Maximize Fitness X f X k X


     (17)  

 
According to Fig.11, it is realized that TLBO have the most rapid diversity decrease. In 
contrary, PSO diversity fluctuates about a nearly constant higher value. DS trend is 
between PSO and TLBO so that it has a high diversity at early stages of optimization 
which gradually decreases as progressing to the end. Numerical results of DS, PSO 
and TLBO are compared in Table 1 for this constrained structural optimization problem. 
It is observed that the minimal weight result of DS is between those of PSO and TLBO 
with a difference of less than 1%. However, DS has obtained such a result within nearly 
one forth of TLBO time and half of PSO time. Average measure of velocity norm for DS 
in these sample runs, has been less than 20% of PSO and 1900% of TLBO among the 
entire iterations.  

Table.1 Comparative results of PSO, TLBO and DS in 3-bar truss design 
Method: DS PSO TLBO 

Cost function  263.91 263.92 263.90 

Infeasibility 0 0 0 

Elapsed time Ratio 26% 46% 100% 

Mean Sum of Velocity 

Norm 

0.5836 4.4765 0.0338 

 



  

 

Fig.11 Diversity comparison between PSO, TLBO and DS in the 3-bar truss design 
 
 
5. CONCLUSIONS 
 
    A new meta-heuristic algorithm was introduced regarding duality of search agents 
in population based stochastic optimization. DS applies special duality measure after 
dynamic sorting of individuals based on their fitness rank at every iteration. The 
algorithm takes benefit of both the primary individual and its dual as a couple of agents 
via its special walks. Since an either primary or dual part of the population is activated, 
DS is run with low function calls for the same number of iterations. Additional walk of 
the dual parents toward their child has provided an enhanced capability for the 
proposed algorithm. 
    Although that the number of fitness evaluations is reduced compared to many 
other algorithms, DS showed competitive performance in seeking global optima not 
only in simple unimodal test functions but also in complex non-convex symmetric or 
asymmetric design spaces.  
    The proposed method was successfully tested in unconstrained and constrained 
problems tracing its diversity in comparison with PSO as a vector-sum optimization and 
TLBO as a parameter-less algorithm. It was concluded that DS can robustly alter its 
trend of diversity variation without requiring rigorous parameter tuning as the complexity 
of the design space changes.  
    Applying a relatively small population size in addition to activating half of it at any 
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iteration; DS is proven to be very efficient and competitive search algorithm in the 
treated problems. It requires considerably less computational effort and function calls to 
achieve similar results to other treated algorithms.  
    In the light of the current study, the proposed duality search can be recommended 
as a simple method with outstanding efficiency and robust diversity control in 
optimization. The parameter-less and memory-less architecture of the proposed DS 
has made it interesting for practical implementation in engineering problems. 
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