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ABSTRACT 
 

     In-service total stress monitoring of steel cables is challenging but crucial to the 
evaluation of structural safety. Traditional invasive stress monitoring methods are 
inapplicable, or unable to measure the actual stress (not the relative variation of stress). 
A smart elasto-magneto-electric (EME) sensor recently proposed by the authors for 
stress monitoring of steel components has shown great promise. In this paper, the 
theoretical background of the EME sensor was firstly illustrated. Based on this, the 
structure and working principle of the EME sensor were introduced. To verify and 
calibrate the EME sensor as a non-destructive testing (NDT) tool to monitor the total 
stress of steel cables, laboratory test, experiment of the full-scale cable, factory 
calibration, and in-situ verification for engineering applications were successively 
carried out. The research results demonstrate that the proposed EME sensor is feasible 
for stress monitoring of steel cables with high sensitivity, fast response, and ease of 
installation, apart from the advantages of traditional elasto-magnetic (EM) sensor. The 
developed EME sensory system has been applied for stress monitoring of the steel 
cables in the Second Jiaojiang Bridge, China. 
 
1. INTRODUCTION 
 
     The distinct advantages such as large span, high flexibility, cost-effectiveness and 
aesthetics make cable-stayed and suspension bridges important forms of modern 
bridges. Precisely total stress monitoring of steel cables is important not only in the 
construction stage, but also in the structural service life, which provides valuable 
information for structural health monitoring (SHM) of these structures. But these 
components are usually helically wrapped around other steel bars or core materials to 
make a singular wire rope. Particularly the large steel cable contains hundreds of wires 
or strands sheathed in a plastic protective cover or duct filled by cement grout or 
grease. Therefore, invasive stress monitoring methods such as strain-based gauges 
are inapplicable, or unable to measure the actual stress (not the relative variation of 
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stress). Alternatively, the EM effect based method (e.g. Sumitro 2005; Tang 2008), has 
been receiving increasing attention, with superiorities of noncontact measurement, 
corrosion resistance, actual-stress measurement, low cost, long service-life and so on. 
Nevertheless, some drawbacks resulted from using a secondary coil as the sensing 
unit, keep from their engineering applications.  

A smart EME sensor for stress monitoring of steel cables was proposed by the 
authors for the first time (Duan 2011, 2012). The EME sensor uses the ME sensing unit 
made of laminated composites to take the place of the secondary coil as the magnetic 
detector. The application of the developed EME sensory system for intelligent stress 
monitoring for steel cables in the Second Jiaojiang Bridge are introduced in this article. 
 
2. WORKING PRINCIPLE OF EME SENSORS 
   
     2.1 Theoretical Background 
     The magnetic properties of the ferromagnetic material change with the application 
of stress, and the extent of the change is a function of the stress and the material itself, 
namely EM effect. From the view of energy, the general expression of the magnetic 
strain energy density for the isotropic magnetostriction materials is (Bozorth 1951): 
 

                             23
sin
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where si is the bulk magneto-restriction strain that is induced when an un-magnetized 

material is magnetized to saturation magnetization, denotes the applied stress, and 
  represents the angle between the magnetization vector and the applied stress. It is 
possible to measure the stress level in ferromagnetic materials by developing the 
relationship between magnetic induction and stress. 

The traditional EM sensor uses secondary coil to detect the change of the 
magnetic flux, resulting in problems in the practical engineering application. The low 
signal-to-noise ratio (SNR) is usually low; the necessity of signal integration, which 
takes a long time, results in a non-real-time monitoring mode; precise installation of the 
secondary coil in accordance with the theory assumption and principle is not easy and 
usually requires skilled technique to guarantee acceptable precision. An alternative way 
to detect the change of the magnetic property of the tested material due to stress is in 
need. 

The ME effect is the polarization P response to an applied magnetic field H 
(Landau 1960). It is noticed that the ME materials in forms of laminated composites 
have been a hot research topic in virtue of their stronger ME effect characterized by 

larger ME voltage coefficient ( V
dV

dH
  , where V is the voltage induced by H) and 

higher detection sensitivity, and thus potential applications in making solid-state, self-
powered and smart ME devices (Wang 2008; Zhang 2009). Using the ME sensing unit 
made of such laminated composites to take the place of the secondary coil as the 
magnetic detector, the smart EME sensor displays great advantages. 
  

2.2 EME Sensor 
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