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ABSTRACT 
 

     The manual bridge inspection requires the hard work of the surveyor. A robot 
such as UAV (Unmanned Aerial Vehicle) can be used to avoid boring and dangerous 
works and replace humans. The field of research for bridge inspection using UAV has 
gradually been developed to meet human needs. However, UAV's GPS (Global 
Positioning System) receiver cannot receive GPS signals under the bridge. This is 
because the satellite signal is blocked by the bridge structure. The purpose of this 
paper is to propose a localization method for bridge inspection using a UAV in the lower 
part of the bridge. Our localization method is a graph-based SLAM (Simultaneous 
Localization And Mapping) approach using a 3D LiDAR and a mono camera. VO 
(Visual Odometry) from the camera and the ICP (Iterative Closest Point) algorithm 
using a 3D LiDAR provide nodes and constraints for the graph structure. Experiments 
were conducted in a bridge environment and our method was compared with the 
ground truth obtained from an RTK (Real Time Kinematic) GPS. 
 
1. INTRODUCTION 
 
     As the development of UAV has been advanced in a decade, the application 
using UAV grow up radically. The bridge inspection using UAV is also in a large part of 
UAV application. Traditionally bridge inspection was done by manual. However, human 
bridge inspection is dangerous and takes a lot of time (Murphy 2011, Jung 2016, Song 
2016). 

In order to inspect the bridge using the UAV, the pose of the UAV should be 
determined. Generally, the pose of the UAV is acquired via the GPS. However, in the 
lower part of the bridge, the satellite signals are blocked by the bridge and GPS is 
unusable. Therefore, the robust localization method is required even under the bridge.           

In this paper, we propose a localization method for bridge inspection using a UAV 
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ground truth. The RMSE value of the proposed method is within 0.7 meters. 
For the future works, we will boost the computation time using the GPU (Graphic 

Processing Unit) for the ICP algorithm. 
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