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ABSTRACT 
 

In this work, we introduce a new component mode synthesis (CMS), an enhanced 
Craig-Bampton (CB) method, recently developed for precise finite element (FE) model 
reduction (Kim and Lee, 2015). Its key to success is the consideration of the residual 
substructural modes, while those are only neglected in the original CB method. Due to 
this consideration, the reduced models in the enhanced CB method are much precisely 
constructed. To obtain the insight into characteristics of the enhanced CB method, we 
investigate its original formulation in the component matrix level, and test its 
performance with numerical examples varying the number of interface DOFs. 
 
 
1. INTRODUCTION 
 
Component mode synthesis (CMS) is a reduced order modeling (ROM) technique 
using partitioning and assembling strategies (Craig and Bampton, 1965, Hurty, 1965, 
MacNeal, 1971, Park and Park, 2004, Rixen, 2004, Bennighof and Lehoucq, 2004). 
The Craig-Bampton (CB) is the most popular CMS method, and the AMLS (Automated 
multilevel substructuring) method, a CB method with the multilevel substructuring 
technique, has been widely used for efficiently solving eigenvalue problems of large 
structural systems. 
 
Recently, we developed two enhanced CMS methods for more accurate ROM (Kim, 
Boo and Lee, 2015, Kim and Lee, 2015). The new methods consider the effect of 
residual substructural modes only truncated in the original methods, and consequently 
we could construct much more accurate reduced models. In the previous works, their 
accuracy and computational efficiency were verified using various numerical examples. 
However, there still exist lots of potential research issues to improve its performance as 
follows: interface reduction techniques, improving their computational efficiency, 
considering the damping system, and mode selection and error estimating techniques 
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(Park, Kim and Lee, 2012, Kim, Lee and Lee, 2014, Kim and Lee, 2014, Kim, Lee and 
Park, 2015). 
 
In this study, we newly derive the enhanced CB method in the component matrix level. 
Using the numerical examples, we compare the eigenvalue solution accuracy between 
the original and enhanced CB methods. In particular, we study the effect of the number 
of interface DOFs that is a significant roll of solution accuracy of the reduced system. 
 
 
2. ENHANCED CRAIG-BAMPTON METHOD 
 
In structural dynamics, the equations of motions with free vibration are presented 
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where M  and K  are mass and stiffness matrices, respectively, and u  is a 
displacement vector. The subscripts g , s  and b  denote the global, substructural and 
interface boundary quantities, respectively, and the subscript c  denotes the coupled 
quantities. Here, gN  denotes the size of the global matrices. 

 
In the CB method, the global displacement vector is defined as 
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where 0T  is the CB transformation matrix, which is constructed by combination of the 

fixed-interface normal modes sΦ  and interface-constraint modes cΨ , bI  is an 

identity matrix, and sq  is the generalized coordinate vector corresponding to sΦ . The 

superscripts d  and r  denote the dominant and residual quantities, respectively. Note 
that sΦ  is calculated from the substructural eigenvalue problems. 

 
After pre-multiplying T

0T  in Eq. (1), and condensing r
sq  with 222 /)  ( dtd , the 

global displacement vector gu  is approximated as 

 
Table 1. Comparison of the original and enhanced CB methods  
 

 CB Enhanced CB 

Transformation matrix 0T  HTT a0  

Reduced mass matrix Μ  HTMTHHRRHΜ ag
T

a
TTT   

Reduced stiffness matrix Κ RHHK T  
Size of the reduced matrices N  N  
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where rsF  is the residual flexibility. 

 
Neglecting aT

2  in 1T , the reduced matrices of the CB method are obtained as 

00 ΤΜΤΜ g
T , 00 ΤΚΤΚ g

T .          (6) 

The reduced matrix size N  is much smaller than the global matrix size ( gNN  ).  

 
Then, using 1T , the reduced matrices of the enhanced CB method are newly derived 
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Note that Eq. (7) might lead to much accurate reduced models without adding the 
substructural modes due to compensation of the residual mode effect in rsF . We 

present the comparison between the original and enhanced CB methods in Table 1.  
 

 
 

Fig. 1 A structural model. 
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Table 2. Numerical cases  
 

DOFs 
Displacement Rotation 

u  v  w      

Case 1 ○ ○ ○ ○ ○ 
Case 2 ○ ○ ○     
Case 3 ○         

        ○: free,  : fixed 
 
 
In addition, although the residual flexibility rsF  in R  and ag

T
a TMT  is only related with 

the boundary interface (see Eq. (8)), it affects the total reduce model because of 
multiplying H . Therefore, the small interface boundary DOFs is insignificant to the 
accuracy of the reduced system in the enhanced CB method. This is numerically tested 
in Section 3. However, for better computational efficiency, a fully populated matrix H  
might be handled in near future. 
 
 
3. NUMERICAL STUDY 
 
We here compare the solution accuracy of the approximated eigenvalues between the 
original and enhanced CB methods using the relative eigenvalue error. We consider a 
structural model that is two simple plates connected by a slender column. Length L  
and width B  of two plates are 11 m and 10 m, column height H  is 10 m, thickness t  
is 0.05 m. Young's modulus E  is 206 GPa, Poisson's ratio   is 0.3, and density   is 
7,850 kg/m3. Two plates and column are modeled by 1110 and 101 shell elements, 
respectively, and the four edges of the bottom plate are fixed, see Fig. 1. 
 
The structural model is partitioned by two substructures at the middle of the column, 
and, to investigate the effect of the small interface DOFs, we consider three numerical 
cases varying the number of interface DOFs, see Table 2. Ten substructural modes, 
selected by the frequency cut-off rule, are used to construct the reduced models. Fig. 2 
clearly shows that the enhanced CB method leads to better solution accuracy than the 
original CB method in the numerical cases considered here. 
 
 
4. CONCLUSIONS 
 
We introduce the enhanced CB method and its performance. Its original formulation is 
newly derived in the component matrix level, and then the more efficient formulation is 
proposed here. Due to the residual mode effect, the enhanced CB method leads to 
much better precise reduced model than the original CB method without increasing the 
number of substructural modes. In addition, the enhanced CB method shows good 
performance despite the small interface boundary DOFs. 



 
Fig. 2 Relative eigenvalue errors, 10 substructural modes selected. (a) Case 1, (b) 

Case 2 and (c) Case 3. 
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