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ABSTRACT 
 

     This paper presents an analytical modeling methodology for the stiffness analysis of 
a beam with two fixed ends. Beam modeling is a critical step in the design and analysis 
of beam structures and mechanisms. In this paper, we apply the Screw Theory to 
derive a symbolic model of the stiffness matrix with respect to the location of the 
loading and the geometry of the beam. Based on the model, the relationship between 
the loading location and the deformation is discussed. Finite Element (FE) model is 
built to verify the analytical model and the error is below 1 %. This proposed modeling 
method simplifies subsequent tasks such as design optimization and sensitivity study. 
The symbolic formulas can be the guidances for designers in doing beam structural 
analysis. 
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model 
 
1 INTRODUCTION 

 
     Beam analysis is one critical step in the analysis of structure and flexure mechanism 
Smith (2000), Shi and Su (2012), Shi et al. (2013). The derivation of a symbolic model 
Shi et al. (2014) is important in the analysis of the structural deformation under the 
loading of 6 degrees of freedom (DOF). By means of the Screw Theory, we can derive 
the analytical models of the beams. These symbolic formulas are easier for designers 
to recognize the geometric interpretation of each element in a compliance or stiffness 
matrix.  
 
     A lot of work has been done in the beam analysis using the Pseudo Rigid Body 
Model (PRBM). Howell and Midha (1995) built the parametric deflection approximation 
model for the compliant mechanisms, which is later developed to PRBM. Dado (2001) 
built a variable parametric pseudo-rigid-body model for beams with end loads. Yu et al. 
(2012) proposed a 2 R PRBM in the analysis of the beam deformation. Venkat and Su 
(2015) developed a 3-spring PRBM for a cantilever beam. Chen et al. (2011) described 
a 3 R PRBM model by using an improved particle swarm optimizer. However, PRBM is 
usually used in the deformation analysis of the beam less than 3DOF. By applying the 
Screw Theory, a 6DOF model can be derived for the beam analysis. Shi and Su (2013) 
derived a stiffness matrix for a beam with circular cross section. Shi et al. (2014) 
applied the Screw Theory in obtaining the analytical model of the beams with the 



  

different cross sections. Selig and Ding (2001) used the Screw Theory to derive the 
equation of a simple static beam. However, these previous work only focuses on the 
analysis of the cantilever beams, where the loading is located at one end of the beam. 
There is less work done in the beam modeling with a loading applied in the middle of a 
beam. 
 
     As shown in Fig. 1, a beam is suspended with two fixed ends. The concentrated 
forces and moments in the three directions are placed at one point of the beam. In this 
paper, we derive an analytical model of the stiffness matrix based on the loading 
location and geometrical parameters. The proposed modeling method is useful in beam 
modal analysis Xu et al. (2014), parametric sensitivity study and design optimization. 
The rest of the paper is organized as follows. Section 2 illustrates the Screw Theory 
and the stiffness matrices of the beams with a rectangular or circular cross section. 
Section 3 presents the modeling method of a beam with two fixed ends. In section 4, 
we provide an example to calculate the compliance matrices based on two different 
loading locations.  In section 5, we analyze the compliance matrices based on the 
different loading locations. The Finite Element (FE) model is built to verify the analytical 
model. Section 6 is the conclusion of the paper. 

 
Figure 1.A beam with two fixed ends 

 
2 SCREW THEORY 

 
     In this paper, we apply the Screw Theory in the derivation of the stiffness matrix and 
conduct the structural analysis. The applied loading in the Screw Theory is defined by a 

wrench vector )M ,M ,M ,F ,F ,F(ˆ
zyxzyxW  in the publication of Su et al. (2011). The 

deformation is defined by a general twist vector ) , , , , ,(ˆ
zyxzyx T . They are 

related by,  
 

    ],[=]][[   ,ˆ][=ˆ   ,ˆ][=ˆ IKCWCTTKW     (1) 

 
where [K] and [C] are six by six stiffness and compliance matrices, respectively. The 
stiffness of a single beam with a rectangular cross section is 
 



  

 









































0
6

0400

6
000

4
0

00000

12
000

6
0

0
12

0
6

00

00
12

000

2

2

2

l

l

ll

ll

l

l

EI
K z

b








,     (2) 

 

where
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/ lt ,
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// wtII yz  , )1(2/1   ,   is the Poisson’s ratio and   is 

derived from 
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     The stiffness of a single beam with circular cross section is defined as 
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where 
22

/ ld .  

 
3. MODELING OF A BEAM WITH TWO FIXED ENDS 

 
     In this section, we demonstrate the modeling method of a beam with two fixed ends, 
which has a circular cross section. The beam with a rectangular cross section follows 
the same derivation process. As shown in Fig. 2, a wrench is placed at one point on the 
center line of the beam. In the modeling of the structure, we firstly split the beam to two 
segments from the plane where the wrench is placed. The two segments with the same 
cross section are considered to be connected in parallel. The definition of serial and 
parallel connection of flexural structure is show in the publication Su et al. (2012), Shi 
(2013). Depending on the location of the separate plane, the two segments have 



  

different lengths. Secondly, by means of an adjoint transformation matrix [Ad], we can 
derive the stiffness matrix of the beam through the equation 
 

          1
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where the subscript 1 means the left segment beam and 2 means the right segment 
beam. [Kw1] and [Kw2] are obtained by substituting the length nL and L, respectively. n is 
the length ratio of the left segment over the whole beam, which is corresponding to the 
location of the loading. [Ad1] and [Ad2] are the adjoint matrices and obtained by  
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Here, [R] is the rotation matrix. [D] is the skew-symmetric matrix defined by the 
translational vector d.  

 
Figure 2.Modeling of a beam with two fixed ends 

 

      zdZR ,0,0,0 11  ,    (7) 

 

      zdZR ,0,0, 22   .     (8) 

 
     In this paper, the stiffness matrices of one single beam, Eq. (2) and Eq. (4) in 
Section 2 are based on the Euler Bernoulli Beam Theory. The geometric ratio of length 
over diameter should be over 10 so that the beam is considered as a long beam, where 
the tensile stress is dominant when comparing it with the shear stress. The derivation 
method of the beam with two fixed ends also needs to follow this rule. Thus, the 
proposed modeling method has some requirements. It is that the loading on the beam 
in longitudinal direction should be within the range shown as the center yellow range in 
Fig. 3. Within this location range, both of the two split segments are ensured to have 
the geometric ratio over 10. 
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Figure 3.Loading requirement of the analytical model. 

 
 
4. CASE STUDY 

 
     Here, we present an example of a beam with a circular cross section and it is made 
of tungsten. After substituting the material properties and the location ratio n1 from 
Table. 1, we can obtain the compliance matrix at the location 1 as  
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     Here, the units of the rotational and translational displacements are radian and 
millimeter (mm), respectively. The units of the forces and moments are newton (N) and 
newton-millimeter (N·mm), respectively. For example, the value 3.49E-4 mm/N in 
column 2 of Eq. (9) means the translational displacement in the y direction caused by 1 
N force in the y direction. The value 2.04E-8 radians/N·mm in column 6 of Eq. (9) 
means the rotational displacement in the z direction caused by the moment, 1 N·mm in 
the z direction. After substituting the value of n2, we can also obtain the compliance 
matrix of the loading at the location 2. 
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Table 1. Parameters for case study 
 

Beam length  
( L ) 

500 mm Yong’s Modulus 
( E ) 

210 GPa Location value 
(

1n ) 
0.4 

Diameter  
( D ) 

20 mm Poisson’s ratio  
( ) 

0.3 Location value 
(

2n ) 
0.5 

 
5. DISCUSSION OF THE MODELING 

 
     From Eq. (9) and (10), we can find the differences between the compliance 
according to the different locations. Some conclusions are obtained as following: 
 

1) The absolute values of the elements in Column 2 and 3, Column 5 and 6 are 
respectively the same. The reason is that the y and z directions are towards the 
radial direction, and the circular cross section is symmetrical. If the beam has a 
rectangular cross section, the absolute values of these elements will be different. 

2) The value at column 5 and 6 is -8.73E-7 in [C1] but 2.23E-19 in [C2]. This is 
because this value means the translational displacement in the y or z direction 
caused by the moment in the y or z direction, respectively. At location 2, the 
loading is at center in the longitudinal direction of the beam. Thus, the pure 
moment theoretically does not cause the translational displacement. 2.23E-19 is 
the calculation precision of the software and it can be considered as 0. 

3) The value at column 2 and 3 is -8.73E-7 in [C1] but 2.23E-19 in [C2]. This is 
because this element value means the rotational displacement in the y or z 
direction caused by the force in the y or z direction, respectively. At the location 
2, the loading is at center in longitudinal direction of the beam. Thus, the pure 
moment theoretically does not cause the translational displacement.  
 

     In order to evaluate the derived stiffness matrix in Eq. (9), we build a Finite Element 
(FE) model to analyze the model and calculate the errors of the analytical model. As 
shown in Fig. 4, the beam is placed at the coordinate system according the Fig. 1 and 
with the parameters shown in Table 1. Concentrated force is located by means of the 
location value n, 0.4. The model is well meshed with multiple layers.  

 
Figure 4. Finite Element model. 



  

     As shown in Fig. 4, we apply a force of 1 N in the y direction on the beam. The 
corresponding translational and rotational displacements at the point of the loading are 
shown in Table 2. When we multiply a wrist (0,1,0,0,0,0) to Eq. (9) , we can also obtain 
the rotational displacement in the z direction as 8.73E-7 radians and the translational 
displacement in the y direction as 3.49E-4 mm. When comparing the values with the FE 
model, we can calculate the errors of the analytical model. They are 0.57 % for the 
rotational displacement and 0.8 % for the translational displacement.  

 
Table 2. Parameters for case study 

 

)(radianx  )(radiany  )(radianz  )(mmx  )(mmy  )(mmz  

-1.1039E-10 
 

-1.3871E-11 
 

8.65617E-7 
 

7.0935E-10 
 

3.5050E-4 
 

8.9379E-9 
 

 
6. CONCLUSION 

 
     In this paper, an analytical modeling method based on the Screw Theory is 
presented in deriving the stiffness matrix of a beam with two fixed ends. Based on the 
model, the relationship between the displacements in 6DOF and loading location is 
analyzed. FE model is built for verifying the analytical modeling method and it shows 
that the error is below 1 %. The benefits of these symbolic formulas are that designers 
can easily conduct structural analysis of the beam, and they simplify subsequent tasks 
such as design synthesis and sensitivity analysis. This modeling method can also be 
adopted for the analysis of parallel mechanism. 
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