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ABSTRACT 
 

     Using the yield criteria proposed the effect of plastic anisotropy on the 
development of a plastic zone in a thin annular disc subject to internal pressure is 
revealed. It is shown that, in contrast to isotropic material, the plastic zone may start to 
develop from the outer surface. In this case the solution is purely analytic. If the plastic 
zone starts to develop from the inner surface of the disc then a numerical technique is 
in general necessary. This technique is based on the method of characteristics. 
 
1. INTRODUCTION 
 
     Modern stage of technological development in aircraft, automotive, shipbuilding 
and other industries is marked by continuous updating, searching and designing of new 
advanced manufacturing methods especially metal forming processes. Creation of 
efficient and scientifically founded metal forming technologies is associated with 
necessity for detailed study of material properties and fullest usage of these properties 
in engineering design. 
     The most specific property, resided in majority of real materials, is anisotropy, 
which is the cause of crystalline structure and texture formation during plastic flow of 
metal. Neglect of this fundamental material characterization in process design not only 
reduces potential deformational capabilities of blank, but also leads to other 
undesirable phenomena: increased metal usage, limitation of ultimate strain, size and 
shape distortion, performance worsening, etc. On the other hand, efficient anisotropy is 
a serious intensification factor for metal forming processes and increasing performance 
of parts in certain directions. 
     In the recent times it has been putted more emphasis on theoretical and 
experimental research of plastic behavior of anisotropic bodies. However, there are 
some unsolved problems, which are associated with the further development of 
anisotropic medium plasticity in the form, appropriate in engineering and process 
design. 
     For example, widely used at the moment yield functions allow performing 
computations of plastic behavior of anisotropic blanks with certain accuracy and 
complexity. Nevertheless, these criteria do not allow solving inverse problem – defining 
effective for forming and performance crystallographic orientations, which are the cause 
of anisotropy. 
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     In consideration of the foregoing, in this work because of energy approach it is 
deduced the yield criteria, which describes the influence of crystalline anisotropy and 
anisotropy, induced by crystallographic texture, on elastic-plastic transition of 
orthotropic material with cubic lattice. 
 
2. PROPOSED YIELD CRITERIA 
 
     Typically, in calculations of metal forming processes it is used von Mises criterion 
(Hosford 2005). According to it yielding occurs when the elastic distortional strain 

energy disU  reaches a critical value 
yield
disU : 

 

0
yield

dis disF U U   . 

 

     Express the distortional strain energy disU  as difference between full elastic 

strain energy fullU  and strain energy due to change of volume volU : 

 

 dis full volU U U  , (1a) 

 
or considering that strain energy is equal to half of dot product of stress and strain 
tensors (in case of volume strain energy – spherical tensors), receive 
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dis ij ij ii jjU      , (1b) 

 

where ij  and ij  are stress and strain tensors. 

     Express the strain tensor in Eq. (1b) using the Hooke’s law (Hosford 2005): 
 

 ij ijkl ijS  , (2) 

 

where ijklS  is compliance tensor in principal axes of anisotropy (for rolled sheet: axis 1 

is along rolling direction; axis 2 is transverse direction and axis 3 is thickness direction). 

     In turn, express components of tensor ijklS  through compliance tensor pqrsS , 

which is associated with crystallographic axes [001], [010] and [100] of crystal lattice. 
Considering that for orthotropic body with cubic crystal lattice, such tensor contains only 
three independent components, receive (Adamesku 1985): 
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where A  is anisotropy parameter of crystal lattice: 
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i  are texture parameters, which for certain crystallographic orientation  hkl uvw  

are defined as 
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ih , ik , il  are Miller indices, defining i-th direction in crystal about principal axes of 

anisotropy. 
     Assuming that Hooke’s law applies till yielding, and substituting Eq. (2) and Eq. (3) 
into Eq. (1b) result in 
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where ijklK  is material tensor: 
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ij  are generalized anisotropy parameters: 
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     It follows from Eq. (5) that anisotropy is determined by anisotropy of crystal lattice 

A  (alloy grade) and crystallographic texture i  (treatment). Here elastically isotropic 

material is also isotropic in plastic region. 

     For example, for aluminum alloy components of compliance tensor pqrsS  are 

1111 15.80S   TPa-1; 1122 5.80S    TPa-1 and 2323 8.95S   TPa-1 (Hellwege 1966) then 

1.207A  . Substituting this value into Eq. (5) and assuming shear rolling texture 

{001}<110> (for which 1 0.25  , 2 0.25   and 3 0  ) result in the following 

generalized anisotropy parameters 12 0.828  , 23 1.115   and 31 1.115  . Or 

assuming Goss recrystallization texture {011}<001> (for which 1 0  , 2 0.25   and 

3 0.25  ) results in 12 1.115  , 23 0.828   and 31 1.115  . 

     In order that constitutive equations are revealed invariant, it is necessary to 
accept that distortion strain energy is equal to according energy of isotropic medium: 
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where i  is effective stress. 

     Equating right parts of Eq. (4) and Eq. (6) gives 
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or in expanded form 
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     In case of isotropic medium, when 1A   or 1 5i   [2], Eq. (7b) becomes the 

form of von Mises criterion. 
     The relations between plastic strains and the stress state are expressed as (Hill 
1950): 
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where d  is Lagrange multiplier. 

     Assuming that at small elastic-plastic strains anisotropy does not change 

( ij const  ), and differentiating Eq. (7a) with respect to Eq. (8) result in 
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     Solving Eq. (9) with additional condition 
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receive conversed expressions: 
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Substituting Eq. (10) into Eq. (7b) defines effective strain id : 
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3. CONCLUSIONS 
 
     Based on energy approach it is deduced the yield criteria, which describes the 
influence of crystalline anisotropy and anisotropy, induced by crystallographic texture, 
on elastic-plastic transition of orthotropic material with cubic lattice. It is shown that 
anisotropy is determined by anisotropy of crystal lattice, i.e. alloy grade, and 
crystallographic texture, i.e. treatment. Using the yield criteria proposed the effect of 
plastic anisotropy on the development of a plastic zone in a thin annular disc subject to 
internal pressure is revealed. 
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