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ABSTRACT 
 
     In this study, an efficient yet accurate method using an enhanced first-order shear 
deformation theory(EFSDT) is presented for the visco-elastic analysis of laminated 
composite plates. The main objective is to systematically modify the strain energy of 
first-order shear deformation theory(FSDT) based on a classical Reissner-Mindlin’s 
plate theory. To this end, the in-plane warping functions based on the efficient higher-
order plate theory(EHOPT) are synthesized into the FSDT to improve the performance. 
The relationships between the FSDT and EHOPT are systematically established via a 
strain energy transformation. The convolution theorem of Laplace transformation is 
employed to circumvent the overwhelming complexity of dealing with visco-elastic 
materials. The numerical results are compared to those available in literature. 
 
 
1. INTRODUCTION 
 
     Recently, lightweight and high stiffness materials are demanded in various 
engineering applications. So, advanced structures made of laminated composite plates 
have been widely used in automobile, aerospace and many other branches of 
engineering industries due to their high stiffness to weight ratio. 
     With increasing utilization of laminated composite plates, numerous analysis models 
have been developed to accurately predict their static and dynamic responses. Starting 
with well-known conventional theories (CLPT; classical laminated plate theory, FSDT; 
first order shear deformation theory), many other refined higher order shear 
deformation theories developed in last three decades. However, most of them can not 
satisfy transverse shear stress conditions at surfaces and interfaces. 
     On the other hand, various zig-zag composite plate theories were also developed to 
improve their accuracy and efficiency. Among many proposed zig-zag theories, the 
efficient higher order plate theory (EHOPT) is known to be the best 5 D.O.F model 
because it can satisfy the transverse shear free conditions at top and bottom surfaces 
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as well as the shear continuity conditions at interfaces (Cho 1993). However, EHOPT 
requires C1 shape functions (slope continuity condition along the boundary of the 
element) for the finite element implementation, which result in heavy computational 
efforts. 

The enhanced first order shear deformation theory (EFSDT), which only requires C0-
continuity in their finite element implementation, was developed in order to circumvent 
numerical issue of the EHOPT (Kim 2006). They systematically establish the 
relationships between the displacement fields of the EHOPT and FSDT via the strain 
energy transformation. In compliance with the relationships between them, one can 
come up with the FSDT-like theory. And their accuracy can be further improved by 
utilizing the recovery procedure. 

Meanwhile, all of the mentioned theories have been analyzed linear elastic behavior
of the composite structures. However, composite material is composed of elastic fibers 
and visco-elastic matrix which lead to visco-elastic behavior such as creep strain, 
stress relaxation and time-dependent failure. Thus, visco-elastic effects of the 
laminated composite plates should be considered for the reliable analysis. Several 
visco-elastic analysis for the dynamic response of the composite plates were performed 
in last three decades, and some researchers utilized the concept of the Laplace 
transformation for the visco-elastic analysis to solve the problem of time integral 
computational cost (Nguyen Sy, 2012).  

In this paper, as a new way to address the aforementioned issues, EFSDT is 
applied to the visco-elastic problem and tested numerically. By employing Laplace 
transformation, time integrations of the Boltzmann superposition integral can be 
simplified as compared with elastic counterpart. In addition, the relationship between 
the two theories (EHOPT and FSDT) is systematically derived in the Laplace domain, 
so that one can come up with the theory incorporating the simplicity of FSDT as well as 
the accuracy of the EHOPT for the visco-elastic analysis. The numerical results 
obtained herein are compared to those available data in literature to demonstrate the 
accuracy and efficiency of the present theory. 

2. MATHEMATICAL FORMULATION 

In this paper, we consider laminated composite plates of thickness h, which are 
made of monoclinic material. Geometry and coordinates of the laminated composite 
plates is shown in Fig. 1. The reference plane of the laminated composite plates is 
referred as xα, and the through-the-thickness position is denoted by x3.

2.1 Constitutive equation for the visco-elastic material 
Constitutive equation for the visco-elastic material is given by the form of Boltzmann 

superposition integral  
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where t is time, and ( )ijklQ t , ( )ijklJ t  represent the relaxation and compliance modulus. 
 

 

Fig. 1 Geometry and coordinates of the laminated composite plates 
 
     In this paper, Maxwell and Kelvin models are considered as the visco-elastic model. 
The relaxation modulus for the Maxwell model ( ( )M

ijklQ t ) and the compliance modulus for 

the Kelvin model ( ( )K

ijklJ t ) can be expressed as follows: 
 
 ( ) , ( ) (1 ).M Ka t a tM K

ijkl ijkl ijkl ijklQ t Q e J t J e
 

    (2) 
 
     By applying the convolution theorem of the Laplace transform, the constitutive 
equation for the visco-elastic material can be simplified as follows: 
 
 * * * * * *( ) ( ) ( ), ( ) ( ) ( ),ij ijkl kl ij ijkl kls sQ s s s sJ s s      (3) 
 
where superscript ( )* represents the parameters in the Laplace domain. 
Eq. (3) in Laplace domain is similar to those of the linear elastic constitutive equation 
which is based on Hook’s law, so that computational efficiency can be improved as 
compared with the elastic counterpart. 
 
 
     2.1 Enhanced first order shear deformation theory for the visco-elastic material 
     In this section, an enhanced first order shear deformation theory for the visco-elastic 
analysis is derived by applying the strain energy transformation. The time-dependent 
displacement field of EHOPT can be expressed as 
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And those of FSDT can be written as follows: 
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where the superscript ( )o denotes the variable at the reference plane, and 
3( ) ( ; )x x t    represents the through-the-thickness warping functions. 

     By applying the linearity of the Laplace transform, the displacement fields in Laplace 
domain can be given by 
 

 
* * * *
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And 
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     In order to derive the relationships between the two theories, the least-square 
approximation in the average sense is applied to the displacement fields of Eqs. (6) and 
(7).  This least-square sense yields the following relationships 
 
 * * * * * * *
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     The visco-elastic strain energy expression for the EHOPT can be written in the 
compact form of 
 
 * * * * * *
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By using the relationships of Eq. (8), visco-elastic strain energy of the EHOPT can be 
transformed into that of the FSDT-like theory as follows: 
 
 ,EHOPT FSDT ErrorU U U   (12) 
 
where 

ErrorU  represents the truncated strain energy, C  and  can be determined by  
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minimizing 
ErrorU  as close to be zero as possible. 

     After solving the problem with a FSDT-like theory (
FSDTU ), the displacement field of 

EHOPT can be recovered in Laplace domain by substituting the relationships of Eq. (8) 
into the displacement field of Eq. (6) as: 
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Finally, by applying the inverse Laplace transform to the Eq. (13), the recovered 
displacement field in real time domain can be obtained as follows: 
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3. NUMERICAL RESULTS AND DISCUSSION 
 
     To demonstrate the accuracy and efficiency of the EFSDT, cross-ply laminated 
composite rectangular plates are analyzed as numerical example. The material 
properties of each ply are given as  
 
 / 25, / 0.5, / 0.2, 0.25,L T LT T TT T LT TTE E G E G E v v      (15) 
 
where L represents a parallel direction, T denotes perpendicular direction to the fiber. 
The visco-elastic coefficient for the Maxwell model (

Ma ) and Kelvin model (
Ka ) are 

assumed as 
 
 0.01, 1.00.M Ka a   (16) 
 
And the mechanical loading is prescribed on the top surface of the plates as follows: 
 
 

0( ) ( ),op t p H t t   (17) 
 
where 

0( )H t t  is the Heaviside unit step function which presents visco-elastic creep 
(

0t t ) and recovery process (
0t t ). 

     The time-dependent normalized in-plane displacements based on the EHOPT and 
FSDT are plotted in Fig. 2. Symmetric cross-ply lay-up for the Maxwell model (Fig. 2-a) 
and anti-symmetric cross-ply lay-up for the Kelvin model (Fig. 2-b) are considered. One 
can see that the in-plane displacements for the Maxwell model are over-estimated with  
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Fig. 2 In-plane displacements for the visco-elastic models 

time as compared with those of elastic solution whereas the results of Kelvin model 
increase from zero value to the bound of the elastic solution. From the numerical 
results, it is noteworthy that the present theory provides reliable results as compared 
with those of FSDT by capturing severe zig-zag variation of in-plane displacements 
while it retains the same computational cost. 

4. CONCLUSIONS 

In this paper, an enhanced first-order shear deformation theory (EFSDT) in Laplace 
domain is proposed for the visco-elastic analysis of laminated composite plates. By
applying Laplace transformation, complexity of the time integrations can be simplified 
as compared with elastic counterpart. The relationships between the FSDT and EHOPT 
are systematically derived by employing a strain energy transformation. And the 
accuracy can be further improved by utilizing the recovery procedure. 

The numerical examples are demonstrated for the cross-ply laminated rectangular 
composite plates. Numerical results show that the present theory provides accurate 
results for the visco-elastic responses while it requires the same computational efforts 
as compared with FSDT. 
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