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ABSTRACT 
 

A vacuum tube structure is an essential part of emerging innovative transportation 
systems such as the super-speed tube train or pneumatic freight conveying systems. 
One of the basic technical requirements of a vacuum tube structure for realization of 
these systems is maintaining the reduced pressure inside the tube for a certain period 
of time. In this study an analytical model for description of the pressure change inside 
the tube structures is presented. Two different cases are considered for developing the 
analytical model depending on what kind of fluid is intruding through the vacuum tube. 
One is an air-intrusion model, which reproduces the case where the tube structure is 
installed on the surface, and the other is a water-intrusion model for submerged 
vacuum tubes. Formulas for determining the flow rate of the fluid (either air or water) 
movement caused by the pressure difference inside and outside the tube structure are 
derived on the basis of Darcy’s law. The derivation is performed for the cases with both 
compressible and incompressible fluid.  

 
 
1. INTRODUCTION 
 

A vacuum tube structure is an essential part of an emerging innovative transportation 
system called super-speed tube train (SSTT), where trains can operate with a practical 
speed as high as 700 km/h on maglev lines through vacuum tubes, either underground 
or elevated, or even under water (Cassat et al., 2003; Korea Railroad Research 
Institute, 2009).  

 
From the viewpoint of the infrastructure, the basic technical requirements for the 

realization of an SSTT system would be (1) reducing the pressure inside the tube within 
a limited time and (2) maintaining this reduced pressure for a certain period of time. 
The pressure inside the tube is controlled by a series of vacuum pumps that are 
installed at regular intervals along the longitudinal direction of the tube. Once the 
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internal pressure in the tube is reduced, its structure should be able to slow the 
infiltration of outside air as much as possible to minimize the pump operations needed 
to maintain the low pressure. If the tube allows excessive leakage or intrusion of air, the 
cost for maintaining the pressure becomes very high, as a higher pump capacity and a 
higher number of pumps would be necessary. The importance of the airtightness in the 
tube structures has also been empirically demonstrated by a practical application of an 
atmospheric railway, which has been partially installed in the nineteenth century 
(Buchanan 1992). It is therefore desirable to make the tube structure as airtight as 
possible, unless it significantly affects the overall construction cost. 

 
The formula for expressing the fluid inflow or pressure rise inside a closed structure 

with a partial vacuum is derived on the basis of Darcy’s law. The derivation is 
performed for the cases with both compressible and incompressible fluid.  

 
2. DERIVATION OF ANALYTICAL MODELING FOR FLUID INTRUSION IN CLOSED 
STRUCTURES 
 

The permeability of a porous material is its inherent ability to transmit fluids, which 
could be represented by Darcy’s law (Mehta and Monteiro 2005) as follows. 

 
 

 
dq
dt

ൌ
kA
μ
∆P
L

 (1) 

 
 

where dq/dt is the flow rate (m3/s); A, the cross-sectional area of the porous media 
(m2); ∆P, the pressure drop through the porous media (Pa); k, the intrinsic permeability 
(m2), μ, the viscosity of the fluid (kg/m∙s); and L, the length of the flow over the porous 
media (m). If k, A, L, μ, and ∆P are constant, then the flow rate, dq/dt, is also constant.  
However, for the intrusion of a gas into a closed hollow structure with a constant 
thickness and an internal pressure that is less than the outside pressure (Fig. 1), ∆P is 
not constant because the internal pressure increases as the fluid flows into the 
structure.  
 
 

3807



  

 
Fig. 1 Flow of fluid into a closed structure due to pressure drop 

 
 

According to the conceptual design of the SSTT system (Cassat et al. 2003, Korea 
Railroad Research Institute 2009, Lee et al. 2008), the intended internal pressure of the 
tube is 0.1 atm, or 10 kPa. In this case, the air outside the tube structure at atmospheric 
pressure would flow into the tube as depicted in Fig. 2.  

 
 

 
Fig. 2 Inflow of air into tube structure for SSTT 

 
 
2.1 Inflow of compressible fluid 

 
For compressible fluids such as air, Eq. (1) should be altered to consider the 

pressure at the point where the flow is measured (Mehta and Monteiro 2005). The flow 
rate of the air measured at the outside surface of the tube structure is 
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dq
dt

ൌ
kAሺP୭ଶ െ P୲ଶሻ

2P୭μh
 (2) 

 
where h and A are the constant thickness and surface area per unit length of the tube, 
respectively; Po is the atmospheric pressure measured outside the tube; and Pt is the 
pressure inside the tube, which varies with time. If the temperatures inside and outside 
the tube are equal, the pressure rise inside the structure will be proportional to the air 

inflow, i.e., P୭
ୢ୯

ୢ୲
ൌ ୢ୔౪

ୢ୲
V, where V denotes the internal volume of the tube per unit length. 

Therefore, Eq. (2) becomes  
 
 

 
dP୲
dt

ൌ
kAሺP୭ଶ െ P୲ଶሻ

2Vμh
ൌ
kAP୭

ଶ

2Vμh
െ

kA
2Vμh

∙ P୲
ଶ (3) 

 
 
On solving the differential equation (with a form of yᇱ ൌ b െ a ∙ yଶ), the pressure inside 
the tube can be expressed as 
 
 

 P୲ ൌ P୭ ∙
1 ൅ Cଵ ∙ exp ൬െ

kAP୭
μhV ∙ t൰

1 െ Cଵ ∙ exp ൬െ
kAP୭
μhV ∙ t൰

 (4) 

 
 
where C1 is a constant. Under the initial condition that the pressure inside the tube is 
0.1 times the outside pressure, i.e., Pt at t = 0 is 0.1 Po, C1 is estimated to be -0.8182. 
The pressure change can then be expressed as 
 
 

 P୲ ൌ P୭ ∙ ൦
1 െ 0.8182 ∙ exp ൬െ

kAP୭
μhV ∙ t൰

1 ൅ 0.8182 ∙ exp ൬െ
kAP୭
μhV ∙ t൰

൪ (5) 

 
 
 

In case the flow rate of the compressible fluid is measured at the inside surface of the 
tube structure,  

 
 
 
 
 

dq
dt

ൌ
kAሺP୭ଶ െ P୲ଶሻ

2P୲μh
 (6) 
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From P୭
ୢ୯

ୢ୲
ൌ ୢ୔౪

ୢ୲
V, Eq(6) becomes 

 
 

 

 

dP୲
dt

ൌ
kA
μh

∙ ቎
P୭ଶ

2 ቀ
P୲
V P୭ቁ

െ
ቀ
P୲
V P୭ቁ

2
቏ ൌ

kAP୭
2μh

൬
V
P୲
െ
P୲
V
൰ ൌ 	െ

kAP୭
2μhV

∙ P୲ ൅	
kAP୭

ଷ

2μhV
	 ∙
1
P୲

 

 

(7) 

 

On solving the differential equation (with a form of  yᇱ ൌ ay ൅ ୠ

୷
 , the pressure inside 

the tube can be expressed as 
 

 

 

P୲ ൌ ඨC ∙ exp ൬െ
kAP୭
μhV

t൰ ൅ P୭
ଶ 

 

(8) 

 
where C is a constant. Under the initial condition that the pressure inside the tube is 0.1 
times the outside pressure, i.e., Pt at t = 0 is 0.1 Po, C is estimated to be -0.99Po

2. The 
pressure change can then be expressed as 
 
 
 

P୲ ൌ ඨെ0.99P୭
ଶ ∙ exp ൬

kAP୭
μhV

∙ t൰ ൅ P୭
ଶ ൌ P୭ඨ1 െ 0.99 ∙ exp ൬

kAP୭
μhV

∙ t൰ 

 

(9) 

 
 
2.2 Inflow of incompressible fluid 
 

For incompressible fluids such as water, the flow rate of the air measured at the 
outside surface of the tube structure is 

 
 

Q ൌ
kA

μ

P୭ െ Pt

h
 

 

(10)

 

From P୭
ୢ୯

ୢ୲
ൌ ୢ୔౪

ୢ୲
V, Eq(10) becomes  
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dP୲
dt

ൌ
kA
μ
P୭ െ P୲
h

ൌ
kA
μh

∙ P୭ ൬1 െ
P୲
V
൰ (11)

 
 

On solving the differential equation (with a form of  yᇱ ൌ ay ൅ ୠ

୷
 , the pressure inside 

the tube can be expressed as 
 

	 y ൌ C ∙ exp ൬െ
kAP୭
μhV

∙ t൰ ൅ P୭ ሺ12ሻ

 
 
where C is a constant. Under the initial condition that the pressure inside the tube is 0.1 
times the outside pressure, i.e., Pt at t = 0 is 0.1 Po, C is estimated to be -0.9Po. The 
pressure change can then be expressed as 
 

	 y ൌ െ0.9P୭ ∙ exp ൬െ
kAP୭
μhV

∙ t൰ ൅ P୭ ൌ P୭ ൤1 െ 0.9exp ൬െ
kAP୭
μhV

∙ t൰൨ ሺ13ሻ

 
 
3. SUMMARY 
 

Formulas for determining the flow rate of the fluid (either air or water) movement 
caused by the pressure difference inside and outside the tube structure are derived on 
the basis of Darcy’s law. The derivation is performed for the cases with both 
compressible and incompressible fluid. If the intrinsic air permeability (k) of the material 
is known, the internal pressure change in a tube structure over time could be 
anticipated mathematically. It should be noted that Eq. (5), (9), and (13) only express 
the pressure change due only to the air intrusion through the surface of the tube. 
Decrease in the airtightness performance of a tube structures due to discontinuous 
regions such as construction joints should be considered separately from this study. 
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