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ABSTRACT 
 

A general smooth and convex yield function had been proposed , able to model the 
particular behavior of porous materials, particularly rock materials, that are 
characterized by a linear or parabolic Mohr’s envelope, and a particular shape in the 
deviatoric plane. These characteristics are defined by two functions: the equation of the 
criterion in the meridian plane and the extension ratio, which are integrated in a general 
equation ensuring convexity and smoothness of the yield function, whatever the 
characteristic functions. In this paper, further developments of the criterion are made to 
encompass to modelize the behavior of damaged, weathered or heavily fractured rocks.  
We identify the functions that allow to develop a smooth version of the generalized 
Hœk-Brown criterion. So it can be use do predict the behavior of rock masses, relying 
on identification on intact core sample, and taking into account observations made by 
geologist and field engineers through the Geological Strength Index of Hoek. 
 
 
1. INTRODUCTION 
 

Estimating the resistance and deformations problems is a challenging problem for 
rock mechanics engineers and geologist. The rock mass differs radically from the values 
measured in laboratories on core sample.  A first reason is that rock masses can be 
heavily jointed and disturbed. A second that that the surfaces can be weathered, filled 
with fines and clays. The generalised Hœk-Brown criterion is an extension of the Hœk-
Brown criterion (1980), developed to be used for jointed rock masses, or very poor 
quality rock masses. This criterion has been found very practical in the filed, as it can be 
deduced from the Hœk-Brown parameters measured on intact specimen and from the 
Geological Strength Index (GSI). Both criteria are expressed of the extremal stress, and 
thus present sharp corners in the stress space.  As failure envelop tend to be smooth 
surfaces, a smooth version of Hœk-Brown has been developed (Maïolino, 2005). We 
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present in this paper how this smooth criterion can be extended do the case of jointed 
and low quality rock masses to developp a smooth generalized Hœk-Brown criterion.  

Stress sign convention: Traction stresses are positive, and the principal stresses 
ordered as follow : σI ≥ σII ≥ σIII  

 

 

2. THE HŒ K-BROWN CRITERION  
 

     The Hœk-Brown criterion for intact rock pieces is defined by: 

 ( ) ( ) 1 I
I III ci i

ci

f m
   
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     (1) 

Where mi is the value of the Hœk-Brown constant (values between 5 and 30) for intact 
rock and σci is the unixial compressive strength of intact rock pieces.  
     The failure criterion has been modified to take into account various field situations, 
to very poor quality rock masses. In this paper, we consider the criterion and its 
parameters, as defined in the last major revision (Hoek et al., 2002) : 
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Where mb is the value of the Hœk-Brown constant for the rock mass, and s(0 < s ≤ 1) 
and a(0.5 ≤ a ≤ 1)are constants which depend upon the rock mass characteristics.  

 A new classification of rock mass the Geological Strength Index has been 
developed (note ranging from 0 to 100 (intact rock mass)). It can be used to rely the 
parameters of the original Hœk-Brown criterion identified on intact rock samples and 
the field properties of the rock mass : 
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Where D is a disturbance factor which depends upon the nature of the excavation 
methods and the nature of the engineering problem. It varies from 0 for undisturbed 
rock masses to 1 for very disturbed rock masses.  
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3. POLAR DECOMPOSITION OF A YIELD SURFACE 

 
For a given mean stress ( / 3m Tr  ),the yield surface can be reduced to its cross-

sectional shape on the deviatoric plane, or  -plane. A yield surface can be 
represented in a unique manner by the mean stress and the deviatoric invariants 
( 2

2 ( ) / 2J Tr s , 3
3 ( ) / 3J Tr s ), with 1ms    ,but it is more practical to replace the 

third invariant by the Lode angle  , to work in the  plane. 
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The set  2 ,J   define polar coordinates on one sixth of the deviatoric plane, which is 

sufficient for an isotropic criterion. Zienkiewicz and Pande (1975), using the fact that a 
yield surface  can be reduced to its  polar expression, provided tools to study the 
regularity, the sensitivity to the extension and the convexity of a criterion starting from 
the shape function ( )pg   

 2 ( )pJ g   (7) 

 

     The deviatoric radius : 2 / /6
( )m J

 
 


 2 / /6

( )m J
 

 


 , gives the yield function 
in the meridional plane  2,m J , for / 6  . This value of the Lode angle 
corresponds to a classical triaxial test, or compression triaxial test  I II III    . 

The function ( )pg   is the shape function of the yield surface in the deviatoric plane. 
It is normalized  ( / 6) 1pg    and  gives directly the value of the extension ratio 

( / 6)p Sg L  . 

The extension ratio SL  has a physical meaning and can be determined from 
experiment. The condition / 6    corresponds  to extension triaxial tests 
( )I II III    , which can be performed with the same triaxial cell as compression 
triaxial test. 
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 (8) 

Physically, this means that for the same mean stress, the yield value of 2J  would 
be lower in extension than in compression. The value of SL  is directly linked to the 
deviatoric shape of a yield surface. While this value can be independent from the mean 
stress (Mohr-Coulomb), some rocks present a shape of their yield surface changing 
from triangular (low confinement) to circular (high confinement) (Kim and Lade, 1984) 
i.e, SL  increases from 0.5 to 1. 
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4. POLAR DECOMPOSITION OF HŒK-BROWN  
 

When studying the Hœk-Brown criterion, it can be useful to normalise some 
quantities like mean stress(Carranza-Torres and Fairhurst, 1999) 
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We can thus determine the characteristic functions(deviatoric radius and extension 
ratio ) of the Hœk-Brown criterion : 
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Whereas the Hœk-Brown criterion encompass the particular nature of rocks, that is 
a parabolic intrinsic curve, his shape present edges, whereas the envelop of failure of 
rocks tends to be smooth. The variations of LS with mean stress reflects physical 
properties of rocks in triaxial condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 Hœk-Brown criterion and smooth version 
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5. GENERAL YIELD FUNCTION  

 

The following function allows to develop a smooth version of Hœk-Brown (Maïolino, 
2005), using the deviatoric radius and extension ratio of the Hœk-Brown criterion : 

      2 3 2
3 2

3
3 1 1

2 S S S SL Jf JL L L         (12) 

 

6. DETERMINATION OF THE DEVIATORIC RADIUS OF GENERALISED HŒK-
BROWN  

 

We normalise the mean stress : 
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For a given value of a,    is the root of the following equation : 
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It is impossible to get an explicit expression of σ+  except for a = 0.5(Hœk-Brown) 
or a=1. 
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So we have replaced    using the function ( , , )b ir a m P  
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So that Eq.(15) can be replaced by the following equation :  
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So the roots r  have been computed, [0.5,1], [1,35], [0,1]b ia m P   . Finally the 
following expression of r  is proposed : 

    


( )
P 1+36

( )
P( , , ) 1

( )
p ab

b i i
b

nc a m
r a m

m d a
 (18) 

First a is fixed so that ( )nc a , ( )d a  end ( )p a  can be computed. Then each one is 
studied as a function of a. The following functions are identified : 
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With the following constants: 
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The quality of Eq.(18) is excellent as the values of 2R  is of 0.9957. Comparison has 
been made upon 87500 computed values of r . 
 

7. DETERMINATION OF THE EXTENSION RATIO 
 

     To determinate the value of the extension ratio, we will first have to identify 2J  

in extension ( / 6)   , that we will name   . Once again the function can be 
expressed directly only for two boundary cases : the Hœk-Brown criterion ( 0.5a  ) or 
when 1a   : 
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The identification was performed like for the deviatoric radius. First we determine 
numerically the root of the following equation ( [0.5,1], [1,35], [0,1]b ia m P   ) : 
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We assume that er  can be expressed as follow : 
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We identify the following functions of a : 
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With the following constants :  
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We have 2 0.9968R  . 

We can thus propose the following extension ratio for a generalised Hœk-Brown: 
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8. CONCLUSION 

 

We have proposed a smooth version of generalised Hœk-Brown.  It was not 
possible to obtain literal expression of the characteristic functions, so we have to 
perform numerically. The proposed functions have an excellent correlation with values 
computed directly from the generalized Hœk-Brown criterion. One should remember 
that a, mb and also σci are constant. So, even if the functions we present seem to 
require a lot of computations at first glance, in fact all of these values are constant for a 
given rock mass, so that in a numerical code, they are computed only once, and the 
only real variable is Pi. So in a finite element code, the deviatoric radius and the 
extension ratio are function of only one variable that is mean stress.  
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