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ABSTRACT 
 

Thermal conductivity of soil ground has a great influence on the performance of 
Ground Heat Exchangers (GHEs). In general, it significantly depends on soil‟s density 
(or porosity) and water content since they are decisive factors which control the 
interface area for heat transfer between soil particles. This study conducted a lot of 
thermal conductivity experiments with varying soil‟s porosity and water content, and 
developed a database of thermal properties for weathered granite soils. Based on the 
database, 3D Curved Surface Model and Neural Network Model were suggested for 
estimating the thermal conductivity. The developed model was validated by comparing 
model‟s predictions with measured values of new thermal conductivity data, which had 
not previously been used in developing the model. As for the 3D Curved Surface Model, 
the normalized average values of training data and test data were 1.079 and 1.078, 
respectively with the variation of 0.158 and 0.130, and the predictions became 
unreliable in a low range of thermal conductivity considering the dispersion. As for the 
Neural Network Model, „Logsig-Tansig‟ transfer function combination with 9 neurons 
gave the highest accuracy for the estimation. The normalized average values of 
training data and test data were 1.006 and 0.954, respectively with the variation of 
0.026 and 0.098. It can be concluded that Neural Network Model gives much more 
reasonable results than 3D Curved Surface Model. 
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1. INTRODUCTION 
 

In general, ground-surface temperatures fluctuate with seasonal air temperature, 
while the temperature at deeper levels (below a depth of 15m from the surface) remain 
stable at about 16℃ because the overlying ground acts as an insulator (Olgun et al 
2012). Ground-Source Heat Pump (GSHP) system utilizes these relatively constant 
temperatures as an energy source by circulating the fluid inside the heat exchangers. 
Owing to its tremendous and costless stored energy, the system can guarantee a high 
heat efficiency compared to other heating/cooling systems. In order to exploit this 
ground energy, the heat exchanger is installed in the GSHP system and buried in 
various ways. Traditionally, vertical closed-loop heat exchanger are commonly used 
among others and it requires high drilling costs at the initial stage of construction. 
Recently, however, to resolve a high construction cost, the heat exchangers are 
installed inside existing piles of the building, which is called energy pile. It plays a role 
as not only a structural supporter but a carrier for heat exchange. Because the heat 
exchangers are just installed inside existing piles without any drilling, the borehole 
length is limited to about 20m. Therefore, energy pile‟s heat exchange is usually 
performed in a shallow depth, and hence the design of energy pile should be 
conducted considering the ground thermal properties in a shallow depth. 
 In the design of shallow depth energy pile, the most important factors are the thermal 
conductivity of ground in which the heat exchangers are installed. Therefore the 
reasonable estimation of ground‟s thermal properties facilitate the efficient design of 
GSHP system by providing more accurate estimates of thermal energy transfer 
between the ground loop heat exchanger and the surrounding soil (Hart and Whiddon  
1984). Nevertheless, there are not enough databases of thermal properties which 
reflect the characteristics of Korean weathered granite soils especially in the shallow-
depth ground. Moreover, it is uncertain that the current estimation models are 
applicable to Korean weathered granite soils. In this reason, this study focused on a 
Korean weathered granite soil, and developed a database of thermal properties. Based 
on the database, 3D Curved Surface Model and Neural Network Model were suggested 
for accurate estimation of thermal conductivity. Finally, the developed model was 
validated by comparing model‟s predictions with measured values of new thermal 
conductivity data, which had not previously been used in developing the model. 
 

2. THERMAL CONDUCTIVITY TEST 
 

In general, there are two kinds of methods for obtaining the thermal conductivity: 
non-steady state method and steady state method. Steady state method measures 
heat velocity which keeps the temperature constant between two different materials. 
The representative equipment of steady state method is Heat Flow Meter (Fig. 1). 
Though the procedure of test is simple, however, it takes long time and if the surface of 
materials is unstable, it may give the result with low accuracy. Meanwhile, the non-
steady state method is based on a linear heat source theory. The material properties 
are determined while the sample temperature is still changing. In this reason, the main 
advantage of non-steady state technique is short measurement time. TP08 Probe 
(Hukseflux) is a primary equipment using the non-steady state method. It only takes 
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200s to obtain the results.  
This study measured soil‟s thermal conductivity by using TP08 probe and it is 

composed of some parts as shown in Fig. 2: ① wire ② base, ③ needle, ④ 
temperature sensor ⑤ heating wire ⑥ thermocouple junction. As shown in Fig. 2, 
once heat is injected by needle probe, it causes a thermo electromotive force, and then 
thermal conductivity can be measured in a non-steady state. 
 

 

Fig. 1 Schematic design of HFM equipment 

 

Fig. 2 Schematic layout of TP08 Probe (Hukseflux) 
 
 
3. TEST MATERIALS 
 

The weathered granite soils from Sejong Yongi (W1), Gangwon Pyungchang (W2), 
Junnam Damyang (W3), Busan Geumjung (W4) and Joomoonjin sand (S1) in Korea 
were sampled and used for thermal conductivity tests. Table 1 shows the basic 
properties of these samples. The porosity of undisturbed sample is about 0.4~0.5. S1 
(Joomoonjin sand) is poorly graded soil, while W1~W4 (weathered granite soils) are 
well graded soils. Also as shown in Fig. 3, the weathered granite soils can be regarded 
as non-plastic soils due to its low fine proportion. 

The mineral quantitative analysis (XRD) for the weathered granite soils was 
performed (Table 2, Fig. 4). Thermal conductivity of soil particle (λs) was obtained by 
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Geometric mean based model. As for the Joomoonjin sand (S1), the ratio of quartz 
appeared as more than 90%. It means that there are great differences in the mineral 
composition ratio between weathered granite soils and joomoonjin sand. It implies that 
it may be difficult to apply current models to weathered granite soils in Korea.  

Table 1 The basic properties of samples 

Table 2 Results of Mineral Quantitative Analysis (XRD) 
Soil 

Mineral portion (%) λs 
Quartz Microcline Albeit Kaolin Orthoclase Muscovite Illite Chlorite (W/mK) 

S1 92.0 
       

7.0 

W1 28.2 21.8 24.6 13.8 - 5.9 4.2 0.8 3.504 

W2 28.6 19.0 28.5 9.0 - 6.8 - 1.1 3.491 

W3 40.7 
  

30.8 17.4 
 

11.1 
 

6.044 

W4 38.5 - 23.5 17.9 19.2 - - 0.6 3.875 

*Provided by KIGAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Particle size distribution of samples 

Soil porosity* Cu Cc Gs USCS* 
S1 0.45 2.06 1.05 2.65 SP 

W1 0.44 13.80  1.67  2.58 SW 

W2 0.46 7.80  1.01  2.55 SW 

W3 0.52 7.67  1.23  2.56 SW 

W4 0.53 12.83  1.47  2.54 SW 

*porosity (undisturbed) 
*Unified Soil Classification System 
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Fig. 4 Results of Mineral Quantitative Analysis (W3) 
 

4. DEVELOPMENT OF ESTIMATION MODEL 
 

This study suggested a thermal conductivity estimation model considering porosity 
and water content based on the experimental database. Based on the established 
database, a 3-D Curved Surface Model (Fig. 5) was developed, and its equation can be 
represented as a function of porosity and water content. The ranges are limited to use: 
0~25% for water content and 0.25~0.65 for porosity, respectively. 

 
2( , ) 0.66 20.57 0.94 3.51 28.6f n n n                       (1) 

 

Fig. 5 3-D Curved Surface Model based on experimental data 
 
5. THERMAL CONDUCTIVITY NEURAL NETWORK MODEL (TNNM) 
 

The Neural Network Model is a mathematical model which imitates the network 
system in human‟s brain. This model is widely used in diverse geotechnical engineering 
areas such as estimation of consolidation settlement and undrained shear strength of 
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soils. This study developed Neural Network Model based on the thermal conductivity 
data for estimating the thermal properties of Korean weathered granite soils.  

Neural Network Model consists of multilayer neural network which includes input 
layer(I) – hidden layer(H) – output layer(O). In each layer, there are several neurons 
replicating a standard unit of human‟s nervous tissue and they are connected with 
neurons in other layers by specific weight. Input data of each neuron in layers are 
multiplied by weight and the sum of these values are handled by transfer function. The 
building process of Neural Network Model can be divided into two steps. The first step 
is a training phase, in which the weight between neurons in each layers are adjusted. In 
this step, Neural Network Model is able to learn about the optimum weight that can 
generalize the given data by itself. Next step is a testing phase where the constructed 
model is verified by comparing the prediction data with experimental data.  
 

5.1 Database of weathered granite soils 
This study developed thermal conductivity database of weathered granite soils 

sampled in Sejong, Pyungchang, Geumjung and Damyang area. About 100 data points 
were used in constructing and verifying Neural Network Model. Of all data, 74 points 
data were used as „training data‟ in order to develop a Neural Network Model and 30 
points of randomly selected data were used as „testing data‟. Each input data was 
normalized to data of which range exists within [0, 1] to conduct Neural Network Model 
training efficiently. 
 

Table 3 Characteristics of weathered granite soils used in training and testing job in 
NNET 

Region Porosity(n) 
Water Content  

(%) 

Thermal Conductivity of  

Soil particle (W/mK) 

#200 Sieve Pass Efficiency 

(ratio of fine-grained soil) 
Cu Cg 

Sejong 0.48∼0.61 0∼20.0% 3.50 1.60 7.68 1.23 

Pyungchang 0.49∼0.58 0∼22.3% 3.49 1.80 7.80 1.01 

Geumjung 0.55∼0.64 0∼24.4% 3.88 1.20 12.83 1.47 

Damyang 0.57∼0.67 0∼25.8% 6.04 1.20 13.80 1.67 

 
5.2 Optimization technique 
Error back-propagation algorithm employed in training of multilayer neural network 

was used for this study because input and output data show non-linear relationship. 
Also Levenberge-Marquardt technique provided in Matlab Toolbox was used in the 
optimization technique for weight and bias. Training phase was stopped when it 
reached a max. Epoch or mse converges (Eq. 2) below mean squared error goal 
(0.005). 
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where  ( ) is predicted thermal conductivity data by Neural Network Model,  ( ) is 
experimental measurement data of thermal conductivity and n is the number of total 
data. 
 

5.3 Decision of optimization model 
 In order to build a Neural Network Model, five fundamental input parameters of 

water content, porosity, thermal conductivity, coefficient of uniformity and coefficient of 
curvature were selected. Since the accuracy of Neural Network Model depends on the 
number of neurons in hidden layer and type of transfer function, different types of 
transfer function(Log-sigmoid, Tan-sigmoid, Linear) were applied and the number of 
neurons varied from 1 to 10(Table 4). Analysis was performed to find predictive 
accuracy (R2) of model considering training data and testing data and the model 
showing the highest accuracy was finally selected as the optimized Neural Network 
Model- thermal conductivity estimation model.  

Table 4. TNNM transfer functions and comparison of R2 by the optimum number of 
neurons 

Transfer function The number 
of neurons training data R2 testing data R2 

Logsig-Linear 7 0.90 0.80 
Logsig-Logsig  8 0.87 0.85 
Logsig-Tansig 9 0.93 0.84 
Tansig-Tansig 6 0.85 0.82 

 

       

(a) R2 by number of neuron in hidden layer       (b) Logsig(7)-Linear model 
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(c) R2 by number of neuron in hidden layer       (d) Logsig(8)- Logsig model 

       

(e) R2 by number of neuron in hidden layer       (f) Logsig(9)-Tansig model 
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(g) R2 by number of neuron in hidden layer     (h) Tansig(6)-Tansig model 

Fig 6. Optimum number of neurons and transfer function combination  
Fig 6 (a), (c), (e) and (g) show the change of coefficient of determination (  ) and 

predictive value for training and testing data according to the increase in the number of 
neurons. As the number of neurons increased, coefficient of determination considering 
training data tended to increase. On the contrary, coefficient of determination for testing 
data which was not used in training tended to repeatedly increase and decrease rather 
than increase consistently. Fig (b), (d), (f) and (h) shows the comparison of predictive 
and experimental results considering training and testing data in case of applying the 
optimized number of neurons for each model. All of 4 models show high predictive 
value of 0.8 for the coefficient of determination (  ) and Neural Network Model using 
Logsig(9)-Tansig transfer function was determined as the most reasonable model 
among them. 
 
 

5. 4 Verification of thermal conductivity Neural Network Model 
This study verified the predictive accuracy of Neural Network Model by comparing 

thermal conductivity obtained by 3D Curved Surface Model and Neural Network 
Model(Logsig(9)-Tansig). The normalized data was represented in Fig. 7 and 8. As for 
the 3D Curved Surface Model, the normalized average values of training data and test 
data were 1.079 and 1.078, respectively with the variation of 0.158 and 0.130, and the 
predictions became unreliable in a low range of thermal conductivity considering the 
dispersion. As for the Neural Network Model, „Logsig-Tansig‟ transfer function 
combination with 9 neurons gave the highest accuracy for the estimation. The 
normalized average values of training data and test data were 1.006 and 0.954, 
respectively with the variation of 0.026 and 0.098. It can be concluded that Neural 
Network Model gives much more reasonable results than 3D Curved Surface Model. 
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Fig 7. Comparison of normalized thermal conductivity between experimental and NNET 
Model results (training data) 

 

 

 

 

 
Fig 8. Comparison of normalized thermal conductivity between experimental and 

NNET Model results (testing data) 
 
 
6. CONCLUSION 
 
 
From the results obtained in this study, following conclusions can be deduced. 
 

(1) The 3D Curved Surface model was represented as a function of porosity and 
water content, and the results showed that the model using only two variables 
can guarantee enough accuracy in prediction of thermal conductivity. 
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(2) As for the 3D Curved Surface Model, the predictions became unreliable in a low 
range of thermal conductivity considering the dispersion. 

(3) As for the Neural Network Model, „Logsig-Tansig‟ transfer function combination 
with 9 neurons gave the highest accuracy for the estimation. 

(4) Neural Network Model can consider diverse input parameters and hence it can 
show higher accuracy than other previous empirical models. 

(5) Neural Network Model proposed in this study can improve its accuracy by 
accumulating the data and it has a great possibility in application to any types of 
soils in Korea. 
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