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ABSTRACT 
 

     When a rigid, flat-ended uniform indenter is pressed on the surface of a layered 
substrate, a singular stress field and K-dominant region should arise adjacent to the 
indentation edges. The indentation stress intensity factor (ISIF) is also a fracture 
parameter similar to the mode I crack, which represents the intensification of the stress 
fields. In present article, a method to formulize the ISIF for the singular stress fields 
induced by indentation is proposed based on the conservation integral. The energy 
release rate of crack initiation from the indentation edges is derived. The K-based 
critical condition for crack initiation is found also. 
 
1. INTRODUCTION 
 
     It has been well known that if a rigid spherical or cylindrical body is pressed into a 
large flat glass block, a cone crack will form suddenly at a characteristic load (Frank 
and Lawn 1967). This kind of boundary cracking has been a rich and productive topic 
of research over the past several decades, and remains so because of its relevance to 
contact failures of materials such as bi- and tri-layer structures with brittle coatings in 
many recent bio-materials applications (Ford et al. 2004). It has been proven to be 
difficult to establish a satisfactory analytical solution to quantitatively describe the crack 
initiation at the indenter edge. Generally speaking, the most critical regions for possible 
unstable growth of a flaw are always where there is a localisation of stress, with steep 
stress gradients, and local tension. The failure beneath the bearing surface under 
indentation by a rigid and flat-ended indenter is another typical example of boundary 
cracking induced by the singular stress fields except mode I crack. Actually, knowing 
the material’s fracture toughness, it is possible to predict the critical load at which 
fracture occurs.  
     The present work will focus on the surface critical brittle cracking of the layered 
substrate under indentation. Actually, singular stress fields appear at not only the crack 
tip but also the edge of the indentation. The damage caused by such stress fields refers 
to the crack extension for the crack configuration and the crack embryo for the 
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indentation. The SIF for crack and ISIF for indentation representing the stress 
intensification are fracture parameter for both cases, which is the main causation to 
lead the engineering components to failure. For crack problem, various methods and 
theory have been developed to determine the SIF and the critical cracking condition. 
However, the literatures on the calculation of the ISIF and the critical cracking condition 
for indentation were rarely reported. As we all know, the ISIF for indentation is as 
important as cracks. Indentation is different from the crack after all. Some behaviours of 
fracture for the indentation are other than the cracks (Xie and Hills 2007). The further 
investigations on the failure analysis are constructive for the contact problems, 
including the indentation on the layered substrates which can be used to analyses the 
micro-behaviour of the coating materials. 
 
2. CONTACT PROBLEM 
 
     The indentation geometry considered is illustrated in Fig.1(a) and Fig.2. A rigid flat-
ended indenter of half-width l is pressed by a normal load, P, onto the surface of a 
frictionless half-plane, having a Poisson’s ratio   . The contact problem may readily be 
solved in closed form, and gives rise to the following contact pressure distribution 
(Nadai 1963) 
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Make the change of co-ordinates lrx 1 , and expand this solution, for small r, using 
the binomial distribution. This shows that the pressure in the neighborhood of the 
indenter corner varies as 
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whilst the requirement that the contact be frictionless means that the shear traction is 
zero everywhere along the contact boundary. It will be noted that these stress 
components are precisely the same as those arising along the line 02 x  for a crack 
suffering Mode I loading shown in Fig.1(b). In fact, because the boundary conditions 
along the line 02 x  are identical in the contact and crack problem, the internal state of 
stress everywhere within the two problems is the same, which can be defined as the 
Mode I indentation. The expressions of the stress next to the corners of the indenter 
can be given by a classical crack-tip field solution ( Nadai 1963), i.e.,  
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where the indentation stress intensity factor for the crack problem is defined in the 
usual way, and for the half-plane contact problem it is given by 
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(a)                                      (b) 

Fig.1 A schematic representation of the indentation. (a) Contact by a rigid flat-end 
indenter. (b) Related Mode I crack. 

 
     Interestingly, if the negative sign in Eq. (3) is changed into positive, this result will be 
the same as that for a plane semi-infinite crack (with an uncracked ligament of 2l) 
loaded remotely with a normal load P. In fact, for any Mode I indentation configuration, 
the related crack model can be found similar to the Fig.1(a) and (b). This finding is 
important as it shows that there is a K-dominant region next to the corner of the 
indenter in the indentation case. Then the contact failure can be treated as a crack 
growth problem with a well-defined stress singularity. As shown in Eq. (3), the 
indentation stress intensity factor KI-ind is the only parameter controlling the stress field, 
which means that the boundary cracking along the contact edge should be controlled 
by the same mechanism of fracture similar to the Mode I crack.  
     For the layered substrate as shown in Fig. 3, the singular stress field within thin the 
coating layer next to indenter corners can be given also by the form of the Eq.(3). In 
this case, the ISIF should be determined by the proposed method in this work. 
 
3. CONSERVATION INTEGRAL 
 
     For the two-dimensional elastic solids, the following integrals can be given from the 
conservation law (Eshelby 1951, Sih 1969, Budiansky and Rice 1973). 
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Eq.(5) has two components, 1J  and 2J . For a closed integration path without any crack 
and cavity in it, iJ  will vanish. 1J  is the so-called J-integral and 2J  the *G -integral (Xie 
et la. 1998) . They can all be used to calculate the stress intensity factors for the 
cracked elastic bodies. In the following sections some key steps to calculate the ISIF 
for the indentation have been developed based on the J1-integral.   
 
4. PATH INDEPENDENT FOR HOMOGENOUS SUBSTRATE 
 

     For a closed integration path afedcbas  as shown in Fig.2, following result can be given. 

   0111  
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ii dsuTwnJ , .                                          (6) 

If the path afedcbas  is divided into afedebcdabafedcba sssss  , because of 01 n  on surface 
of the substrate, 0iT  on the abs , 01 T  and 012 ,u  on the des , we have 
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Fig.2 Integration path for homogenous substrate. 
 
Then, from Eq.(6) it following that 
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which means that along any two paths, such as afes  and bcds , starting from the any 
point on the left free boundary to any point within the contact boundary, the results of 
J1-integral are identical. It shows theoretically that the integral is path independent. 
     If the integration path bcds  is half circle and within the K-dominant region, it is not 
difficult to get 
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Then, Eq.(10) becomes  
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This equation is a key formula to construct a method to calculate the ISIFs induced by 
the indentation. This equation can be applied to indentation problems with any infinite 
and finite boundaries. 
 

 

Fig.3 Indentation path for the layered substrate 
 
5. PATH INDEPENDENT FOR LAYERED SUBSTRATE 
 
     For the layered substrate, two closed integration paths as shown in Fig.3 will be 
considered in present work. One is the path nedcbammn sss 1  and the other 

mnnfm sss  2 . Additionally, as 01 n , iT  and 1,iu  are continuous on the paths mns  and 

mns  , from conservation law, we have the following contour integrals. 
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According to Eqs.(7), (8), (13)-(15), it is not difficult to get  
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which indicates that the integral is path independent for composite substrate similar to 
the Eq.10. If the integration path bcds  is half circle and within the K-dominant region, the 
following equation can be found. 
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Fig.4 Boundary translation and crack embryo. 
 

6. CRITICAL FRACTURE CONDITION BENEATH THE BEARING SURFACE 
     For an elastic substrate, the energy released rate of boundary cracking for 
indentation can be defined (Xie and Hills 2007). 
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Now, let all points on the boundary s as shown in Fig.4 move in the same direction, and 
combine this result with the conservation law iJ  for two-dimensional problem. The 
energy release rate expressed by Eq.(18) can then be arranged to give 
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where   01 sJ |  denotes the driving force of boundary cracking in direction x1 and 
  02 sJ |  denotes the driving force in direction x2, when the limits taken exist; 1J  and 2J  
can be given by Eq.(5). Thus, the energy needed to start a new crack at the edge of the 
indenter has been found, by evaluating the contour integrals along the paths shown in 
Fig. 5. 
 

 

Fig.5. Contour integral for J2. 
 
     First, the value of 1J  was found. Let oass   in Eq.(5) as shown in Fig.5 adjacent to 
right corner of the indentation. Because of the 0iT  and 01 n  on the integration path 

oas , then 1J  in this case can be found as  
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We turn, now, to an evaluation of 2J . Let aoss   in Eq.(5) and take the limit 0oas , 
where oas  and obas  form a closed contour as shown in Fig.5. In this case, the 2J  integral 
becomes 
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Note that obs  is a straight line and bas  is a quarter of a circle. Along these two paths, the 
following integration results have been obtained ( Xie et al. 1998). 
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Thus, Eq. (21) now becomes 
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From Eq.(19), the total energy release rate of boundary cracking at any angle   can be 
found as 
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The energy release rate is now maximised with respect to  by setting 0
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where c  are the possible cracking angles at which G  exhibits a maximum value, and 
explicitly this is given by  
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     The most widely used criterion for assessing the extension of a crack is Griffith’s 
(1921). His theory involves an energy balance, which states that the energy used in 
creating a new fracture surface from a solid body must be supplied from a combination 
of released elastic strain energy and from any work done by the applied load. The 
energy criterion of Griffith yields, in principle, a minimum critical load for failure. Thus, 
the critical condition for cracking of the boundary of a quasibrittle coating layer is given 
by 

 cGG max .                                                          (28) 
For a standard cracked specimen subjected to Mode I loading, the critical value of 
energy release rate can be given by 

   ccICICc EKJG /22 1  ,                                       (29) 
where KIC is the fracture toughness of coating layer. Thus, according to Eqs. (27)-(29), 
the critical condition for indentation cracking of the boundary is found as  

 ICind-I KK π2= .                                                    (30) 
Eq. (30) gives a K-based critical condition, which defines a relationship between the 
ISIF and fracture toughness for boundary cracking of the coating layer. It should be 
emphasized that, in all of the above, the ISIF being employed is that defined by Eq. 
(17), and relates to the stress intensity prevalent at the indenter corners. Eq.(30) can be 
used to calculate the critical load to cause initiate fracture of the contact boundary. 
 
7. Numerical example 
     A numerical example for the layered substrate under indentation is considered in 
this section. The mechanical properties of the materials for the substrate and coating 
layer are given in the table 1. The normalized ISIF have been gotten by using the 
Eq.(17) and the finite element method (FEM). In the FEM analysis, ANSYS10 Finite 
Element Package had been used and the eight-node plane structural element and 
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concerned contact element have been selected. Around the indenter corners, we used 
a highly refined mesh where the tip was surrounded by six-node triangular quarter-point 
elements. More than 10,000 nodes and 7000 elements had been used for meshing the 
coating layer and substrate. Fig.6 gives schematically the relationship between the ISIF, 
geometrical and mechanical parameters. Additionally, from Eqs.(17) and (30) the 
critical condition in the form of schematics can be found in Fig.7. It shows that when l/t 
is smaller, the stress intensity factors are weakly dependent on the sc EE / . In this case, 
the ISIF is close to one expressed by Eq.(4), which gives the following result. 

 ICc KlP 2 .                                                             (31) 
 

 
Fig.6 Normalized stress intensity factors for different parameters 

 

 
Fig.7 Critical condition for different parameters 
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8. CONCLUSIONS AND REMARKS 
     When a rigid flat-ended indenter is pressed into half-plane layered substrate, a 
singular stress field and K-dominant region will arise. It may lead fracture of the coating 
layer at a characteristic load. The ISIF KI-ind is the only parameter controlling the stress 
field next to the corner of the indenter, which represents stress intensification similar to 
the Mode I crack. For the half-plane homogenous substrate, it is not difficult to get the 
exact solution of the ISIFs (Nadai 1963). However, for the layered and multi-layered 
engineering structures under indentation, it is nearly impossible to get the exact 
solutions of the ISIFs. It is positive and significant to develop a method, which can be 
applied both to infinite and finite boundary indentation. In present article, a new method 
to formulize the ISIFs for the indentation is proposed based on the conservation integral. 
The main specialties of the proposed method and the critical condition of the boundary 
cracking are investigated. Some numerical examples have been given for the layered 
substrate under indentation. 
     Additionally, the some strength-related mechanical properties of materials in the 
state of coating, such as the fracture toughness, have been attracting lot of attentions 
in the recent years. It is nearly impossible to test the fracture toughness in the micro- 
and nano-scale by using the traditional pre-cracked specimen and concerned method. 
Unlike the traditional test method, the current study shows that the singular stress field 
and the K-dominant region can be induced by the indentation on the flaw-free surface 
of the coating layer, which implies the potential possibility to develop a very simple and 
practical technique to test the fracture based on the proposed fracture theory for the 
coating layered materials by the indentation. 
 
Table 1. Normalized ISIF and normalized width of the indenter 

 l/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Normalized 
SIF. Eq.(3) 

3.0
25.0





s

c



  

GPaEs 200  

2.0sc EE  0.989 0.977 0.958 0.930 0.902 0.877 0.850 0.826 0.805 
4.0sc EE  0.990 0.984 0.969 0.948 0.929 0.911 0.892 0.875 0.860 
6.0sc EE  0.991 0.988 0.979 0.965 0.953 0.942 0.930 0.920 0.910 
8.0sc EE  0.992 0.993 0.988 0.981 0.975 0.970 0.965 0.960 0.957 
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