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ABSTRACT 
 

     The paper presents a novel algorithm for solving multi-degree-of-freedom (MDOF) 
systems containing clearance type nonlinearities. The algorithm is based on piecing 
together the local linear solutions. The accuracy of the solution is the same at any time 
point inside the response since the local solutions are obtained analytically. The time 
step should be only sufficiently small for a reliable numerical determination of the 
switching point between two local solutions. 
     Considering the proposed algorithm, the nonlinear frequency response of the three-
degree-of-freedom semi-definite system with two clearances are analyzed. Good 
correlations with the results obtained by the numerical integration confirm the algorithm. 
 
 
1. INTRODUCTION 
 
     Demands for utilizing nonlinear structural components are increasingly present in 
modern engineering applications. Clearance type nonlinearities can be often found in 
power transmission systems that contain components such as gears, bearings, 
clutches, in robot joints and guideways of mechatronic systems, in many demountable 
structures as a result of looseness of joints, etc. Clearances in transmission systems do 
not only exist due to manufacturing errors and failures, they are often involved by their 
function (e.g. geared systems require clearance between mating gears for smooth 
operation). 
     Numerous methods, such as standard time-domain numerical integrations, various 
harmonic balance methods (Chatterjee 1996, Kahraman 1990, Kim 2005, Lau 1983, 
Wong 1991), analog and digital simulations, piecewise linear techniques (Thompson 
1986) and the time finite element method (Kranjcevic 2001, Kranjcevic 2007, Wang 
1995) have been developed because of the highly individualistic nature of nonlinear 
systems. 
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     In this paper, a novel algorithm for calculating steady state responses of multi-
degree-of-freedom (MDOF) systems with clearances is presented. The algorithm is a 
new developed semi-analytical procedure of explicit integration based on piecing 
together the local linear equations of motion (Kranjcevic 2003). The system with 
clearances starts from an initial position described with one of linear equations of 
motion. When the system changes the piecewise linear stiffness region, the motion is 
represented with the new linear equation. The determination of times in which the 
system changes a linear equation of motion can be done only numerically. 
     The accuracy of the method does not significant depend on a magnitude of the 
integration step since the local linear equations of motion are being solved analytically. 
The time step has to be sufficiently small for a reliable numerical determination of the 
switching points between linear equations of motion. It is a remarkable advantage with 
respect to other numerical integration methods 
     The method is applied to obtain the frequency response of the three-degree-of-
freedom semi-definite system with two clearances under periodic excitations. The 
numerical results are validated considering standard numerical integration software 
(MATLAB). 
 
 
2. PROBLEM FORMULATION 
 
     A multi-degree-of-freedom system (MDOF) with clearances can be represented as 
the n+1 degree-of-freedom semi-definite model shown in Fig. 1. The model consists of 
n+1 mass elements and n clearance type nonlinearities given by the function ( , )i iH x x , 

1(1)ni =  where ix  and ix  are the relative displacement and velocity. The system is 

excited by the periodic force ( )tf .  
 

 
 

Fig. 1 n+1-degree-of-freedom semi-definite system with clearances 

 
 

With T
1 2 n+1[ ]x x x x  and    T T

1 2 n n+1 1 n( ) ( )x x x x x x    x  being the 

absolute and relative displacements, the equation of motion is expressed as 
 

                                              ( , ) ( )t M x H x x f  (1) 

2000



 

where 
 

                       

1

2

n+1

0 0

0 0

0 0

m

m

m





   



M

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ë û

,   T
1 2 n+1( ) [ ( ) ( ) ( )]t f t f t f t f , (2) 

 
T

1 1 2 2 n n( , ) [ ( , ) ( , ) ( , )]H x x H x x H x x   H x x . 

 
The nonlinear function ( , )i iH x x  may be decomposed into stiffness S ( )iH x and viscous 

damping D ( )iH x  characteristics. In particular, the stiffness function is related to the 

force S ( )i i i iF k h x  where ik  is the stiffness coefficient and ( )i ih x  is the displacement 

nonlinearity in clearance. The viscous damping function is assumed to be linear, so the 
damping force is given by i ic x  where ic  is the damping coefficient. Therefore, the 

equation of motion, Eq. (1), may be rewritten as 
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     By introducing the nondimensional relative displacement q  and the nondimensional 

time k t   as new independent variables, Eq. (3) can be condensed into 

nondimensional form 
 
                                             ( ) cos( )m a     q Ζq Ωh q f f  (5) 
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Furthermore, b is the characteristic length,   denotes a nondimensional excitation 

frequency while mf  and af  are the amplitude vectors of mean and alternating load, 

respectively. The elements of matrices Ζ  and Ω  are found to be 
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     The piecewise linear unit displacement function ( )i ih q  for 1(1)ni =  (Fig. 2) which 

describes the clearance of value 2b is defined as 
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Fig. 2 Piecewise linear unit displacement function 
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3. THE NOVEL ALGORITHM 
 
     The novel algorithm for solving MDOF system with clearances is an extension of the 
classical method of piecing the exact solutions. The method of piecing the exact 
solutions is not applicable for MDOF system due to the unexpected complexity of 
solutions. The proposed algorithm is based on the substitution of nonlinear term in Eq. 
(5) with a set of linear equations defined within each of the piecewise linear stage 
stiffness regions. As the clearance is modeled with three linear domains, Fig. 2, the 
nonlinear term has to be replaced with 3n linear equations as follows 

 
                                               ( ) j j Ω h q Ω q b ,   n1(1)3j   (9) 

 

where jΩ  is the local stiffness matrix and jb  denotes the breakpoint vector. Regarding 

Eq. (9), the equation of motion becomes a set of 3n linear equations of motion 
  

                                     ncos( ), 1(1)3j j m a j      q Ζq Ω q b f f . (10) 

 
The nonlinear system starts from an initial position described with one of the local 
equations of motion. When the system changes a stage stiffness region, the system is 
represented with the new local equation of motion. Determination of times in which the 
system changes a stiffness region can be done only numerically. 
     Linear equations of motion can be solved by applying many mathematical methods. 
Using the state-space formulation, preferable in the time-domain analysis, Eq. (10) will 
be reduced to first-order differential equations of the form 
 
                                               n, 1(1)3j j j j j   y A y B u  (11) 
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input gain matrix while cos( )j j m a   u b f f  denotes the excitation vector. 0  and I  

are referred to null and identity matrices, respectively. A similarity transformation 
 

                                                    1 V AV Λ  (12) 

 
with the matrices of eigenvalues ( ), 1(1)2nk k diagΛ  and the eigenvectors V , 

allows a coordinate transformation 
 
                                                              j j jy V z  (13) 

 
which uncouples Eq. (11) giving 
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                                                        j j j j  z Λ z g . (14) 

 
In Eq. (14), jz  is the normal coordinate and j j j -1g V Bu . Each row of Eq. (14) has the 

form 
 
                                                   , 1(1)2nk k k kz z g k     (15) 

 
with  
 

                                                  m a cos( )k k k kg f f     . (16) 

 
Eq. (15) has a well known analytical solution. The accuracy of the method does not 
depend on a magnitude of the integration step since the local solutions are obtained 
analytically. The time step has to be sufficiently small for a reliable numerical 
determination of the points of entering in each stage stiffness region. It is a remarkable 
advantage with respect to other numerical integration methods. 
     In explicit integration methods, the stability of solutions cannot be studied 
considering the standard stability procedures such as Poincaré map or Floquet theory. 
The responses obtained by the proposed algorithm can be only classified as either 
periodic or nonperiodic. Nonperiodic responses may correspond to a quasiperiodic, 
transient or chaotic motion. If the alternating amplitude calculated by the relation 
 

                                                         
2

max min
a

q q
q

-
=  (17) 

 
coincides with the effective amplitude (root-mean-square value) 
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the response is periodic; otherwise the response is nonperiodic. In Eq. (18), qav is the 
average of the ( )q   
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3. NUMERICAL EXAMPLE 
 
     The three-degree-of-freedom semi-definite system with two clearances, shown in 
Fig. 3,  is studied to demonstrate the application of novel algorithm. The system 
parameters 11 12 21 22 0 05.   = = = = , 12 21 0 6. = = , 22 1 1. = , [ ]T

m 0 5 0 25. , .f =  and 

[ ]T
a 0 25 0. ,f =  are adopted from (Padmanabhan 1992) where the system with one 

clearance was studied. 
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Fig. 3 Three-degree-of-freedom semi-definite system with two clearances 

 
 
     According to the proposed algorithm, the procedure requires solving the following 
set of equations of motion 
 
                                      cos( ), 1(1)9j j m a j      q Ζq Ω q b f f . (20) 

 
The local stiffness matrices jΩ  and the vectors of breakpoint take the forms 
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     Starting from the trivial initial condition, the computations are performed simulating 
128 excitation periods for the single point of excitation frequency. This procedure is well 
suited (Thompson 1986) because no another reliable way to distinguish the transient 
and steady state motion at chaotic responses. The switch points in each stage stiffness 
region and the eigenvalues of the state matrix were computed employing the MATLAB 
routines FZERO and EIG. The frequency responses of the first and second 
displacements are presented in Figs. 4 and 5. The nonperiodic solutions are found in 
the frequency range 0.77 <   < 0.94; in other frequency spans the alternating and 
effective amplitudes are the same, which means that the frequency responses are 
periodic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Frequency response of the first displacement; 

  alternating amplitude 1aq ,  effective amplitude ef 1q  (novel algorithm), 

alternating amplitude 1aq  (ODE113) 

 
 
     Responses of dynamical system with clearances can be also analyzed considering 
MATLAB Simulink software package which simulates a dynamical system by 
computing its states at successive time steps over a specified time span, using 
information provided by the model. Simulink provides a wide variety of numerical 
integration techniques. Numerical integration solutions will be considered to be strictly 
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valid only in regions with just one steady state solution. When two steady state 
solutions exist, the numerical integration finds the solution with the smaller amplitude of 
vibration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Fig. 5 Frequency response of the second displacement; 

  alternating amplitude 2aq ,  effective amplitude ef 2q  (novel algorithm),        

alternating amplitude 2aq  (ODE113) 

 
 

     To evaluate the results obtained by the novel algorithm, the nonlinear equation of 
motion, Eq. (5) was solved by using Simulink ODE113 solver. ODE113 is a multistep 
solver based on Adams-Bashforth-Moulton predict-evaluate-correct-evaluate mode. 
The obtained amplitudes agree very well with the results obtained by the proposed 
algorithm.  
 
 
4. CONCLUSIONS 
 
     The novel algorithm is a robust numerical procedure for predicting the steady state 
response of dynamical systems with clearances. The algorithm is an extension of the 
method of piecing the exact solutions. The accuracy of displacements and velocities, at 
any point of each linear stage, is the same because the algorithm is based on semi-
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analytical solutions. It is a significant advantage with respect to other explicit integration 
methods (Runge-Kutta, etc). 
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