
Application of support vector machine in health monitoring  
of plate structures 

 
*Satish Satpal1), Yogesh Khandare2),  

Sauvik Banerjee3) and Anirban Guha4) 

 
1), 2), 4) Department of Mechanical Engineering, Indian Institute of Technology Bombay, 

Mumbai, India 
3) Department of Civil Engineering, Indian Institute of Technology Bombay,  

Mumbai, India 
1) Satish.satpal@gmail.com 

 
 
 

ABSTRACT 
 

     This paper demonstrates the use of Support Vector Machine (SVM) for detection of 
damage location and its intensity in an aluminum plate. Twelve damage locations and 
nine damage intensities have been simulated by reducing thickness of the plate at 
various locations using the finite element analysis package Abaqus. The first mode 
shape data is extracted at various points on the plate and it has been used as input 
data for SVM to predict the damage locations and their intensities. This approach does 
not require data of the plate in damaged state. In order to make the mode shape data 
more realistic in nature, Gaussian noise from 30dB to 80dB has been added. The 
results demonstrate that SVM can be used as a tool for structural health monitoring 
without using data of healthy (undamaged) state. 
 
 
1. INTRODUCTION 
 
     Structural Health Monitoring (SHM) is of great importance in civil, mechanical and 
aerospace structures for safety purpose and to avoid economical loss. The process of 
implementing a damage identification strategy for above mentioned structures is 
referred to as SHM (Farrar et al., 2007). The presence of damage in the structure leads 
to change in the modal parameters (natural frequency, damping and stiffness), and 
interpreting the changes in these parameters one can ensure whether the structure is 
damaged or intact. The change in the natural frequency was not sufficient to locate the 
damage, hence, there was need to develop methods based on mode shape data and 
Frequency Response Function (FRF) data of the structure (Banerjee et al., 2005, 
2009).  
     The use of SVM for prediction of fault in power systems has been demonstrated by 
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Kumar et al. (2011). They used support vector classification to predict the damage 
location. The inputs used for SVM model are Power and Voltage Values. Bulut et al. 
(2007) demonstrates the damage detection in civil structure using SVM classifier and 
wavelets. They found that the SVM was a robust classifier in presence of noise 
whereas wavelet-based compression gracefully degrades its classification accuracy. 
The present article uses vibration data (mode shape data) for regression analysis using 
SVM in order to locate damage and its intensity in the rectangular plate.  
 
 
 

Figure 1 Damage locations 

 
 

Figure 2 FE mesh & data acquisition points 
 
 
Table 1 modified location labels in reference to Figure 1 
 

Locations from center of plate Rearranged location 

Radial distance (mm) 
Location label  
(as per Fig. 1) 

Radial distance (mm)
Location label  
(as per Fig. 1) 

156 1 25 6 

100 2 53 11 

84 3 59 7 

140 4 76 10 

96 5 84 3 

25 6 96 l5 

59 7 100 2 

134 8 124 12 

142 9 134 8 

76 10 140 4 

53 11 142 9 

124 12 156 1 

 
 
 
2. FINITE ELEMENT MODELLING AND ANALYSIS 
 
     A simply supported plate of dimensions 500mm x 400mm x 3mm, with following 
properties: Young’s modulus = 70GPa, Density = 2700 Kg/m3, Poisson’s ratio = 0.3 is 
considered. FE modeling and analysis of the plate is carried out in ABAQUS® using 4 
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node rectangular shell element of size 10mm X 10mm. In Figure (1) damage locations 
are shown which are simulated by reducing the thickness from 10% to 50 % of the 
original plate thickness in steps of 5%. 
     However for better understanding of results, the plate centre is taken as reference 
(0, 0) and locations are defined as per their radial distance from center. The purpose of 
this arrangement is to highlight trend of error in damage prediction with respect to 
location from the centre of the plate. The arrangement can be explained from Table 1. 
 
 
3. OVERVIEW OF SUPPORT VECTOR MACHINE FOR REGRESSION 
 
     A brief formulation on SVM for regression analysis given by Vojislav (2001) is 
presented in this section.SVM is initially developed for solving classification problems, 
and successfully applied in regression problems. The general formulation of regression 
learning is carried out as follows. Given l training data set for learning the machine 
(algorithm), it attempts to learn the input-output relationship f(x). A training data set D = 
{[x (i), y (i)] ∊বn, i= 1, ⋯, l} consists of l pairs (x1, y1), (x2, y2), ⋯, (xl, yl), where the 
inputs x are n- dimensional vectors x∊বn, and the system responses y∊ব are 
continuous values. Here first linear regression problem formulation is considered and 
extended to non-linear problem.  
 

 ( , ) Tf x w w x b (1)

 
where, x is input vector, w is weight vector and b is bias term. 
     Typically regression analysis is associated with approximating input-output 
relationship considering error of approximation. The linear loss (error) function with ߝ-
insensitivity zone introduced by Vapnik is given as 
 

    
 

0                        ( , )
( , )

( , )     otherwiseε

y f x w ε
y f x w

y f x w ε
(2)

 
The linear loss (error) function with ߝ-insensitivity zone is shown graphically in the 

Figure (4). 
 
 
 

 

Figure 3 parameters used in (1D) SV regression Figure 4 Loss (error) function 

e

ߝ
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     The value given by the Eq. (1) is predicted one and y is the actual value of the 
system response for given input x. The loss or error is equal to zero if the difference 
between predicted and actual value is less than ߝ tube. Vapnik’s ߝ-insensitivity loss 
function allows us to set limit or some measure of error which can be tolerated and 
given by a small value ߝ. If the predicted point lies outside the ߝ tube, then the loss is 
equal to magnitude of the difference between the predicted value and the radius of the 
 tube which termed as slack variable and is given by ߝ
 

  ( , )  for data "above" an  tubey f x w ε ζ ε (3)

 

   *( , )  for data "below" an  tubey f x w ε εζ (4)

 
A new empirical risk is introduced in order to perform SVM regression and is given 

as 

 


  
1

1
,
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ε
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(5)

 

The objective of SVM regression is to minimize the empirical risk 
ε
empR and norm of 

weigh vector 
2

w
simultaneously. Thus, main goal is to estimate a linear regression 

hyperplane  ( , ) Tf x w w x b by minimizing 
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Using expressions for slack variables the empirical risk becomes 
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Under the constraints 
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There are mainly two parameters which have to be tuned to get good performance 

from SVM regression analysis. The constant C influences the trade-off between an 
approximation error and the weight vector norm‖࢝‖. Another parameter ߝ which has to 
choose by the user, that defines the precision required in prediction. 

This constrained problem is solved by forming primal Lagrangian (Lp) function, and 
is given by 
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This primal Lagrangian function has to be minimized with respect to primal variables 
w, b, , and ߦ∗ and maximized with respect toߙ, ߙ

∗, ,ߚ ߚ
∗. The problem is solved in its 

dual form and is given as follows, 
Maximize 
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Subject to 
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If we look at the dual form of problem it is expressed in terms of Lagrange 
multipliers ߙ and ߙ∗ only. This standard optimization problem can be expressed in a 
matrix form and given as: 

Minimize 
 

   0.5 T T
d α HααL f (14)

 

Subject to constraints Eqs. (12), (13). 
Where for linear regression 

 

 1TH xx (15)

  

        1 2 1 2     N Nf ε ε ε ε ε εy y y y y y (16)
 

The solution of above problem will give Lagrange multipliers pairs. The number of 
support vector is equal to the nonzero parameters ߙorߙ

∗. After calculating Lagrange 
multipliers the weight vector and bias term is found as follows 
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The best regression hyperplane in case of linear problem is given by 
 

 ( , ) Tf x w w x b (19)
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While designing SV machines for non-linear regression analysis first map the input 
vectors x∊বn in to vectors z of a higher-dimensional feature space Fሺࢠ ൌ ࣘሺ࢞ሻ, where 
ϕ represents a mapping), and solve a linear regression problem in this                   
feature space. The most mapping (kernel) functions are polynomials and radial basis 
functions with Gaussian kernels. The given optimization problem is solved with change 
in only Hessian matrix H and is given as 

 

 
  
 

G G
H

G G
(20)

 
Where G is the corresponding kernel matrix G (࢞,  and weight vector and bias (࢞

term is given by 
 

  *w αα (21)

  

 


 
1
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i i
i

b y g
l

(22)

  
g Gw (23)

 
and the best non-linear regression function is given by 
 

   ,z f x w Gw b (24)

 
 
4. RESULTS AND DISCUSSION 
 

Since SVM regression algorithm gives only single output, SVM regression analysis 
is carried out in two stages.     
 

4.1 STAGE1: DAMAGE LOCATION PREDICTION 
 
     The damage location prediction was done in two steps. Step 1 involved predicting 
the X coordinate and step 2 involved predicting the Y coordinate of the damage 
location. The training input set used for step 1 is mode shape data for all damage 
intensities and training output set was corresponding X coordinate of damage locations. 
Test set was the mode shape data whose damage location and intensity was to be 
predicted. SVM now predicts X coordinate of damage location in step 1. Step 2 was 
similar to step one except that the Y coordinate of damage location was predicted. 
Stage 2 involved damage intensity prediction. In this stage, mode shape data for a 
particular location was used as input and damage intensity at that location was used as 
output. This was repeated for all the locations. Parameters for SVR are taken as: C=2, 
e=0.0005, Radial Basis function (RBF) kernel, ࢿ - insensitive loss function, kernel 
width=0.6 for damage location prediction, and C=10, kernel width=1 for damage 
intensity. The percentage error is calculated as given below. 
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%	error ൌ
ට൫X୮୰ୣୢ୧ୡ୲ୣୢ െ Xୟୡ୲୳ୟ୪൯

ଶ
 ൫Y୮୰ୣୢ୧ୡ୲ୣୢ െ Yୟୡ୲୳ୟ୪൯

ଶ

maximum length of diagonal
X	100 

(21)

 
First mode shape data obtained at all the points of the simulated rectangular plate 

highlighted in the Figure 2 is considered as training input for the SVM, and 
corresponding damage location and/or intensity as training output. The damage 
location is represented by the midpoint of the damaged area in order to get single 
valued output for the SVM. 

 
 
 

Table 2 Error in damage location prediction averaged over damage location of plate 
 

noise level
Intensity% 

no noise 80 dB 70dB 60 dB 50 dB 40 dB 30 dB 

10 27.00 27.00 27.03 27.08 27.49 51.93 83.84 

15 1.79 1.79 1.82 1.85 2.41 27.52 68.56 

20 0.62 0.62 0.62 0.66 1.28 11.32 75.68 

25 0.21 0.21 0.23 0.34 0.57 2.01 36.17 

30 0.16 0.17 0.16 0.19 0.33 1.64 43.64 

35 0.13 0.13 0.13 0.16 0.27 1.02 27.18 

40 0.11 0.11 0.12 0.15 0.27 0.99 11.46 

45 0.09 0.09 0.10 0.11 0.28 0.86 2.54 

50 0.08 0.08 0.08 0.14 0.18 0.85 3.58 

 
 

Figure 5 Error in damage location prediction  
averaged over damage intensities 

 
Figure 6 Error in damage location prediction  

averaged over damage location 
 
 
 

The same % errors for considered noise level cases now are averaged over 
damage intensity and the variation of % error with the damage locations is tabulated in 
table 3 and is plotted in the Figure 5 averaged over damage intensities and averaged 
over damage locations in Figure 6 respectively.  For no noise case, the % error remains 
below 2% up to damage location 134mm and it suddenly increases at the locations 
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142mm and 156mm which are far away from the center of the plate. As we add noise in 
the data for low noise levels the same error, which was up to 134mm in the case of no 
noise case, now it is at 125mm. The detailed results are given in the table 2. 

 
 
 

Table 3 Error in damage location prediction averaged over damage intensity of plate 
 

Distance 
noise        (mm)

25 53 59 75 84 96 100 107 125 134 142 156

no noise 0.19 0.35 0.60 0.38 0.36 0.30 0.41 1.06 0.38 1.36 11.83 11.97

80 dB 0.19 0.35 0.60 0.38 0.36 0.30 0.41 1.05 1.37 11.45 11.83 11.98

70 dB 0.20 0.36 0.62 0.39 0.36 0.31 0.42 1.08 1.36 11.47 11.85 11.97

60 dB 0.31 0.42 0.64 0.38 0.46 0.32 0.50 1.12 1.38 11.48 11.89 12.01

50 dB 0.44 0.72 0.64 0.74 0.54 0.51 0.70 1.48 1.91 11.75 12.25 12.42

40 dB 1.14 1.67 1.77 1.83 13.21 1.80 12.38 12.95 13.40 12.86 23.40 34.47

30 dB 13.93 25.06 24.98 24.06 35.10 36.06 35.40 56.82 36.48 46.25 67.73 68.36

 
 
 

4.2 STAGE2: DAMAGE INTENSITY PREDICTION 
 
     Table 3 summarizes the error in intensity prediction by SVM for those locations 
found in the stage 1. For noise level up to 50dB the % errors are almost same at low 
damage intensity. 
 
 
 
Table 3 Error in damage intensity prediction averaged over damage location of plate 
 

noise 
Intensity% 

no noise 80 dB 70dB 60 dB 50 dB 40 dB 30 dB 

10 26.66 26.63 26.57 26.45 31.36 69.18 100.65 

15 1.49 1.50 1.58 1.70 2.88 30.24 85.12 

20 1.04 1.03 0.99 1.17 2.40 13.11 79.95 

25 0.69 0.69 0.69 0.80 1.55 2.68 42.02 

30 0.43 0.44 0.47 0.57 1.45 4.29 47.19 

35 0.17 0.16 0.17 0.42 0.70 2.40 27.89 

40 0.04 0.05 0.11 0.34 0.75 2.63 15.54 

45 0.27 0.26 0.26 0.24 0.92 1.68 11.55 

50 0.42 0.42 0.43 0.54 0.87 1.83 16.44 

 
 
 

The percentage error in intensity prediction is calculated as given below 
 

%	error	 ൌ
หDamage	intensity୮୰ୣୢ୧ୡ୲ୣୢ െ Damage intensityୟୡ୲୳ୟ୪ห

Damage intensityୟୡ୲୳ୟ୪
X	100 (22)
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Figure 7 Error in damage intensity prediction 
averaged over damage location for low noise level

Figure 8 Error in damage intensity prediction 
averaged over damage location for high noise level

 
 
 
     Table 4 represents the detailed values of % error for different noise levels including 
no noise case, and it is plotted in the Figure 7 and Figure 8. For no noise case the % 
error is high for only two locations (142mm and 156mm) but, when we add the noise, it 
is high for three locations for noise levels 80dB to 50dB. The error for the case of 40dB 
noise is acceptable only for the locations closer to the center of the plate i.e. up to 
75mm from the center. 
 
 
 
Table 4 Error in damage intensity prediction averaged over damage intensity of plate 
 

Distance
noise 

25 53 59 75 84 96 100 107 125 134 142 156

no noise 0.48 0.68 0.72 0.74 0.65 0.79 0.74 0.70 0.60 1.17 11.64 11.63

80 dB 0.47 0.67 0.72 0.74 0.67 0.78 0.72 0.70 1.19 11.64 11.63 11.64

70 dB 0.48 0.70 0.73 0.67 0.66 0.78 0.75 0.70 1.25 11.64 11.68 11.63

60 dB 0.62 0.93 0.87 0.71 0.49 0.90 0.96 0.85 1.32 11.77 11.79 11.71

50 dB 1.64 1.69 1.59 1.58 3.20 2.71 2.89 2.32 1.99 12.54 12.40 12.63

40 dB 8.58 9.10 5.93 6.32 17.72 5.36 14.57 13.51 15.83 13.09 25.28 35.44

30 dB 39.00 38.33 34.24 33.27 40.21 39.58 43.56 60.29 48.97 49.32 70.10 71.58

 
 
 
5. CONCLUSIONS 
 
     The SVM has been trained with vibration-induced displacements collected at 99 
points for the first mode shape as input and damage intensity or location as output. 
After training, the SVM is able to predict any damage intensity or location of the training 
set data with almost negligible error. The % error in prediction of damage location and 
intensity is less at the center of the plate and goes on increasing away from the center. 
The prediction capability of SVM is degraded with addition of noise in the data. For low 
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noise levels % error remains almost same as that of no noise case in the data that 
means SVM can tolerate such noise levels with less deviation in the errors. 
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