
 

 

Stress-resultant based elasto-plastic analysis for a concrete plate 
 

Jinsang Chung1) and Nam H. Kim2) 
 

1), 2) Department of Mechanical and Aerospace Engineering,  
University of Florida, Gainesville, FL 32611, USA 

1) jschung@ufl.edu; 2) nkim@ufl.edu, Tel.1-352-575-0665, Fax. 1-352-392-7303 
 

Abstract 
 

In this paper, a stress-resultant based elasto-plastic model for a concrete plate is 
presented as a substitute of a layered model, which is commonly used and requires 
many sub-layers in order to describe a nonlinear stress distribution over the thickness. 
Iliushin’s failure function is extended to a concrete plate based on the Drucker-Prager 
yield criterion after a modification from a parametric study. Two new parameters are 
introduced to the yield function in order to describe the non-symmetric, fully plastic 
moment of a concrete plate and the coupled behavior of membrane and bending 
actions. General plastic rules are applied to the stress-resultant based yield criterion. In 
addition, an integrated section method using equivalent material coefficients is 
presented for the stress-resultant based concrete plate for steel rebar reinforcement. 
Several numerical test models are compared with the layered model for the purposed 
of verification.  

 
Keywords: Stress-resultant model, Concrete plate, Elasto-plastic plate, Integrated 
section method.  
 
 
1. Introduction 
 

According to the development of CAD/CAE technology, nowadays, many structural 
engineers want to simulate their structures as it stands without any simplification, and 
thus, the modeling of a building or civil structure become more detail and sometime 
requires several tens of thousands of elements. Therefore, a huge amount of numerical 
calculation is required to obtain a reasonably accurate resistance for a structure against 
various internal and external loadings. Currently developed numerous computer 
systems and numerical methods make it possible to conduct such a large amount of 
calculation.  

Generally, civil structures are designed to be elastic to maintain structural integrity 
under ordinary and predictable loading scenarios. Sometimes, however, simulations 
beyond the elastic limit are also required to estimate collapse patterns and weak points 
under unexpected loading, such as earthquake. Finding weak points can be useful for 
an evenly distributed collapse mode, which creates a safe structure in severe 
conditions. Numerical simulations beyond the elastic limit require much more 
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calculation.  
The nonlinear material behavior of plates and beams can be described in different 

ways, as illustrated in Figure 1. Since traditional failure criteria of materials are defined 
using local stress-strain relations, the solid model in Figure 1(a) is the most ideal for the 
simulations beyond the elastic limit, but with the expense of the most computational 
resources. The failure state can be estimated in each solid, layer, or section, depending 
on whether the solid, layered or section models are used. When it comes to a real 
multi-story building or a multi-span bridge under earthquake loadings, the solid model is 
nearly impossible due to a huge amount of numerical calculations involved; elasto-
plastic stress-strain relation must be calculated at every integration point. Therefore, 
computationally more efficient nonlinear simulation methods are required to reduce the 
simulation cost. For that purpose, the layered model is commonly used for a plate 
element, and the fiber or resultant section models are used for a frame element [8, 13]. 
However, the layered model and the fiber section model also require lots of numerical 
calculation and information storage because integration needs to be performed at each 
layer and fiber. To apply the nonlinear analysis to a large structure, more efficient 
methods are required, and thus, the stress-resultant based methods are develped in 
this paper.  
 
 

 
Figure 1: Modeling methods for nonlinear simulation of a structural member. 

 
 

A frame element has been a major objective for modeling a nonlinear behavior by 
many researchers due to the fact that lots of types of structures can be modeled by the 
frame element. Sectional material nonlinearity of a frame element is considered by two 
different models: the resultant section model and the fiber section model. The resultant 
section model which defines the sectional nonlinear response using moment-curvature 
relations has been presented by Takeda et al. [3], Hilmy and Adel [4], Hajjar and 
Gourley [5] and El-Tawil and Deierlein [7]. The fiber section model estimates the 
response of section based on the uni-axial stress-strain relation of each fiber cell 
consisting a frame section. The uni-axial constitutive model of concrete has been 
presented by Kent and Park [9], Mander et al. [10] and El-Tawil and Deierlein [6].  

In plate elements, material nonlinearity can be simulated by either the layered 
model or the stress-resultant based model. In general, the layered model can be used 
for any type of failure criteria because it is based on the local stress-strain relation. On 
the other hand, the stress-resultant based model has mainly been applied to metal 
plates based on von-Mises criterion. Firstly, the yield function based on stress-
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resultants was suggested by Iliushin [11], and it has been modified to describe the 
Bauschinger effect by Bieniek and Funaro [17]. The progressive development of plastic 
zone under bending moment was described by a plastic curvature parameter 
suggested by Crisfield [12]. The influence of transverse shear forces on the plastic 
behavior was incorporated into the stress-resultant yield function by Shi and Voyiadjis 
[13].  An extension from a frame yield criterion to the reinforced concrete plate was 
presented by Koechlin et al. [15]. However, since the yielding moment is a function of 
membrane forces in combined loadings, it is limited to be used in general applications. 
Most research on stress-resultant based elasto-plastic behavior is so far focused on a 
metal plate. In this paper, the stress-resultant based model for a concrete plate is 
presented. An appropriate yield function is proposed based on theoretical and 
parametric studies, and general plasticity rules are applied to the yield function. In 
addition, steel reinforcement is modeled as an integrated section method using 
equivalent material coefficients. 

This paper is organized as follows. Section 2 describes the stress-resultant model 
for a concrete plate where a yield function using stress-resultants based on the 
Drucker-Prager failure criterion is presented. Plastic behaviors such as flow rule and 
plastic consistency parameter are also derived for the proposed yield function. Section 
3 explains a steel rebar model which is combined with the stress-resultant model for 
concrete reinforcement. Section 4 shows numerical comparisons between the 
proposed model and the layered model with a unit element and a bridge structure, 
followed by conclusions and discussions in Section 5. 

 
 

2. Elasto-plastic analysis of a plate element 
 

In this section, an efficient elasto-plastic model based on the stress resultants for a 
concrete plate is introduced. Generally, for the elasto-plastic behavior of a plate, the 
layered model is used to take into account the nonlinear stress distribution through the 
thickness [13]. Stresses at each layer are calculated based on the strains that are 
assumed linearly distributed. The yield criterion for the elasto-plastic behavior is applied 
to calculate stresses and tangent stiffness at each layer, which are integrated over the 
thickness to calculate internal forces and stiffness of the element. The concept of 
layered model is described in Figure 2(a), where the constitutive relation between 
element stresses and strains of a single layer can be written as 
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where xy
, xy

and 
p
xy  are incremental stresses, strains and plastic strains, 

respectively. The subscripts , ,x y xy  represent the local directions of the components. 
Once the elasto-plastic stress-strain relationship at each layer is calculated, the relation 
between stress resultants and the mid-plane strains can be described after integrating 
over the thickness, as 
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The accuracy of the above relation depends on the number of layers, which often 

goes beyond 15. Although reasonable results can be expected in a layered model, a lot 
of calculation is required because the complicated elasto-plastic behavior should be 
estimated in every layer at each integration point. In the case of a large structure with 
tens of thousands of elements, the cost for analysis could be significant.  
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(a) Layered model 
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(b) Stress-resultant model 

 
Figure 2 Local coordinate and nonlinear models for elasto-plastic behavior of plate 

 
 

For efficient calculation of the elasto-plastic behavior of a plate element, the stress-
resultant model was proposed, which is based on the Iliushin’s yield function [11]. For 
metals using the von-Mises criterion, a modified yield criterion was suggested by 
Voyiadjis and Woelke [14]. The concept is described in Figure 2(b), whose yield 
criterion is explained in the following sub-section. In this model, the yield criterion 
consists of stress resultants instead of stresses; therefore, no layer-by-layer integration 
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is required. A modified Iliushin’s yield function expressed in terms of stress resultants 
for metal (von-Mises criterion) are applied for the development of plastic deformations 
across the thickness [14]. In this paper, a modified yield criterion based on Iliushin’s 
yield function for concrete (Drucker-Prager criterion) is proposed for concrete buildings 
and civil structures. The basic concepts for flow rules are based on the paper of 
Voyiadjis and Woelke [14]. 
 
 

2.1 Stress resultants based yield function for a concrete plate 
 

For a concrete material, the following form of Drucker-Prager yield criterion is often 
used 

 

   22 1
: 0

3xx yy xy xx yy xx yyf A B              (3)

 
where A and B are material constants, defined as 
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c
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where   and c are, respectively, the friction angle and cohesion [2]. For a concrete 
material, the constant B can be calculated using tensile and compressive yield stresses 

as  
2

3
c t

c t

B
 
 


 . The first term on the right-hand side of Eq. (3) corresponds to the 

first invariant of stress tensor, and the second term is the second invariant of stress 
deviator. 

The objective is to develop a stress results-based yield criterion from the stress-
based criterion in Eq. (3). When a material is in the elastic state, the stresses at the top 
and bottom of a plate can be expressed in terms of stress resultants as 
 

 2

6
,  , 1,2  ij ij

ij

N M
i j

h h
 (5)

 

where h is the thickness of the plate and ijN  and ijM  are membrane and moment 
resultants, respectively. In order to derive the stress resultants based yield criterion, 
these stresses are substituted into Eq. (3) to yield 
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where and B0 is initial uni-directional yield stress. In the expression of the yield function, 
the stress resultant intensities, N and M, are given as 
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Since Eq. (6) is the criterion for the initial yielding, it should be modified for a 

continuous elasto-plastic behavior of a concrete plate. In the plastic state, the 
superposition between the membrane and bending actions is not allowed. In addition, 
the plastic zone starts from the top and bottoms surfaces and gradually move toward 
inside until the entire cross-section becomes fully plastic. Because of different roles of 
membrane and bending stress resultants, the moment term of the first invariant of 

resultants, 
2

6
xx yy

o

A
M M

B h


, is removed due to the fact that this term has both 
compressive and tensile stresses at the same time even though it comes from the first 
invariant of stresses, hydrostatic stress. Indeed, this term will show a discrepancy with 
the reference model in numerical comparison shown in the next section. In addition, the 

coupled term between membrane and moment components, 
2 3

12

o

NM
B h , is also 

removed through a parametric study and numerical tests. This term was also deleted in 
the previous research of metal plate based on von-Mises yield criterion for kinematic 
hardening problem by Armstrong and Frederick [17].  

In a concrete plate, the neutral plane deviates from the geometric mid-plane due to 
plastic deformation. This happens because the tensile yield stress is much less than 
the compressive one. Three parameters, α, k and β are introduced for progressive 
plastic deformation, unsymmetric stress distribution and the coupled behavior of 
membrane and bending resultants. The proposed form of stress-resultants based yield 
function of a concrete plate can thus be written as 
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where N0 and M0 are nominal yield membrane and moment resultants of the cross-
section, respectively, given as 
 

2

,
4

 o
o o o

B h
M N B h (11)

 
The linear stress expression in Eq. (3) is valid until the initial yield point. Yielding by 

bending is propagated from the top and bottom planes to the mid-plane as the bending 
moment increases beyond the initial yielding moment. A specific parameter is required 
to describe the continuous yielding beyond the initial yielding point. In this paper, 
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followed by Crisfield [12], the plastic curvature parameter α is designed for progressive 
development of plastic zone under a bending moment as 

 
1 8 1 8
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where 
p  is the equivalent plastic curvature defined by 
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and 
, ,p p p

x y xy    
 are the incremental plastic curvatures of each direction. The 

equivalent plastic curvature 
p  is accumulated value from initial plastic deformation by 

bending. Therefore, it should be set by zero when it meets an elastic state, which is 

described in Figure 3. The parameter 
p  is calculated based on the equivalent plastic 

curvature. 
For a metal plate, the coefficient 1/3 in Eq. (12) is based on symmetric progressive 

yielding and it is theoretically calculated. The coefficient 1/2.5 in Eq. (12) for concrete is 
based on unsymmetric yielding of a concrete plate due to the gap between tensile and 
compressive yielding, and it is numerically estimated by the progressive yielding of a 
layered concrete plate. For a metal material, yielding is initiated at top and bottom 

surface at α = 2/3, 
p = 0, and entire section yielding is occurred at α = 1, 

p =  . For 
a concrete plate under bending, initial yielding always occurs at the tensile part and the 

value of α is 0.6 and 
p = 0.  

 

 
Figure 3 Initializing equivalent plastic curvatures, 

p  
 
 

In concrete plates, the stress distribution through the thickness is not symmetric 
contrary to the metal under elasto-plastic status. The fully plastic moment of a concrete 
plate cannot be estimated by conventional fully plastic moment, Mo in Eq. (11), due to 
non-symmetric distribution of stress. In the Drucker-Prager yield criterion, the 
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compressive strength is much larger than the tensile strength, and thus, the neutral axis 
is shifted to the compressive part. In this paper, parameter k is added to express the 
fully plastic moment based on Mo in a concrete plate. 

In order to derive the parameter k, it is assume that the concrete is in yielding under 
bending with zero membrane forces. It is also assume that there is no work hardening 
during plastic deformation. The yield function must satisfy when the material is in the 
fully plastic state, in which the fully plastic bending moment Mp is applied and the 
plastic curvature parameter 　 becomes one. Then, the yield function in Eq. (10) can be 

expressed as  
2

2

1
1 0

3
p

o

M

kM

 
   

 



 from which the moment calibration parameter, k, 

is calculated as 

1

3p ok M M    
  . The fully plastic moment, Mp, can be calculated 

by a numerical analysis; for example, the layered model. 
In addition to the two parameters, α and k, the yield criterion is further modified in 

order to match the results with the layered model under combined axial and bending 
loadings. For that purpose, parameter studies, described in the following section, are 
conducted and the exponent of the moment term β is introduced. 

 
2.2 Parametric study for a modified yield criterion of a concrete plate 

 
Parametric studies are performed to check the proposed yield function for a 

concrete plate under combined cases of axial and bending loadings. The parametric 
studies are executed using pre-axial bending loading and pre-moment axial loading 
tests. Through comparison between the results of the layered model and those of 
stress-resultant model, appropriate values of parameters can be found. In this paper, 
the results from the layered model are considered as a reference. For the purpose of 
parameter study, the original failure function in Eq. (6) is modified to have three 
parameters, α, k and β, as 
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As explained in the previous section, the two underlined terms are expected to be 

removed. The first term (I1_M) is from the first invariant of stress tensor and the second 
term (J2_NM) is from the second invariant of deviatoric stress tensor. These two terms 
are tested and compared with the reference results in Figure 4(a) with parameter β = 
1.0. When the yield function includes these terms, the yielding moments under pre-axial 
loading show different patterns compared to the results of the layered model. The I1_M 
term makes the maximum yielding moment to occur at different pre-axial loadings, 
while the J2_NM term makes the maximum occurs at zero pre-axial loading. Although 
the curve without these two terms is still different from the curve form the layered 
model, it is found that this curve follows the trend correctly. Based on the numerical 
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results with and without I1_M and J2_MN terms in Figure 4(a), these two terms are 
excluded from the failure function. Now, in order to calibrate the difference in amplitude 
between the layered model and the proposed failure function, an exponent, β, is 
introduced for moment term of the second deviatoric stress invariant tensor. In the 
parameter study of the exponent β in Figure 4(b), it turned out that the value of 0.39 
matches well with that of the layered model, which is used for the following analysis. 
Also, the pre-moment tensile and compressive axial loading cases are investigated in 
Figure 4(c) and (d). The results of the modified yield function well coincide with those of 
the layered model when the exponent β is 0.39. 
 
 
 
 

       
     (a) Yielding Moment on Pre-Axial                  (b) Yielding moment with the exponent β 
 
 

       
      (c) Tensile Yielding on Pre-Moment                 (d) Compressive Yielding on Pre-Moment 
 
 

Figure 4 Yielding stress resultants in combined loading cases 
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2.3 General plastic rule 
 
To describe the behavior of elasto-plastic plates, the constitutive law and the flow 

rule are required. The hypo-elastic constitutive relation is written in the rate form as  
 

 p s E e e   (15)

 
where the rate of stress resultant s  and that of strain rate e  are defined as 
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In addition, in Eq. (15), 
pe  is the rate of plastic strain, and E describes the relation 

between the stress resultant rate and mid-plane strains rate in a plate as 
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where E, v and h are, respectively, the elastic modulus, Poisson’s ratio and thickness of 
a plate. For an elastic response, it is clear that membrane, bending and transverse 
shear are not related each other.  

The elasto-plastic behavior of the stress-resultant model follows a similar 
formulation with the stress-based flow rule. In the associated flow rule, the mid-plane 
plastic strain rate is proportional to the gradient of plastic potential, which is identical to 
the yield function, as 
 

p F 



e

s
 (18)

 

where   is the plastic consistency parameter. Plastic deformation is in the direction 
normal to the yield surface, and the amount of plastic deformation is decided by the 
plastic consistency parameter.  

In general, the plastic consistency parameter is non-negative, 0  : positive during 
plastic deformation and zero for elastic deformation. On the other hand, the yield 
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function is always non-positive: 0F  for the elastic state and 0F   for the plastic 
state. In optimization, this is called the Kuhn-Tucker condition and can be expressed as 
 

0, 0, = 0F F    (19)
 

The non-positive property of the yield function is regarded as a constraint, and the 
plastic consistency parameter plays the role of the Lagrange multiplier corresponding to 
the inequality constraint. The Kuhn-Tucker condition satisfies all possible states of a 
material. When the state varies, the condition can have three cases. 
 

(a) Elastic loading : 0, 0 = 0F F       
(b) Neutral loading : 0, 0 = 0F F       
(c) Plastic loading : 0, 0 = 0F F       

 

When the stress is on the yield surface, = 0F  is equivalent to = 0F  . In elastic 

and neutral loadings, 0  and there is no plastic deformation. During plastic loading, 

F  is zero which means that the yield function remains zero, and the following 
condition can be obtained 
 

 , : 0p p
eq eqp
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F F
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where the rate of equivalent plastic strain can be defined as 
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2.4 Newton-Raphson algorithm for the plastic consistency parameter 

 

In numerical analysis, the rate of plastic consistency parameter is converted into an 

increment by multiplying it with time increment: t    . In a similar way, all rates in 
the previous section can be considered as increments. In the following derivations, an 
increment will be used instead of rates. When a concrete has no strain hardening, the 
plastic consistency parameter can be calculated after substituting Eqs. (15) and (18) 
into Eq. (20), as 
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where the components of 

F
s  are listed in the following equation 
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From the incremental form of Eq. (15), the incremental stress resultant forces can be 
calculated using the plastic consistency parameter as 
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from which the elasto-plastic tangent stiffness can be obtained as 
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The procedure to decide the plastic consistency parameter   is displayed as a 

flow chart in Figure 5. 
Flow chart for   and stresses and strains at each integration point 

 
 
3. Reinforcement of steel rebar 
 

Steel rebar reinforcement is a common way of increasing the strength and ductility 
of a concrete plate. Since concrete has much less strength in tension than 
compression, a steel rebar is used for reinforcement of tensile part of concrete. In 
addition, since concrete is a brittle material, the steel rebar is also used for increasing 
ductility. Generally, the effect of the steel reinforcement of plate can be considered by 
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Figure 5 Flow chart for calculating plastic consistency parameter and updating stress resultant 

 
 
 

two methods. The first is a smeared layer method in which the rebar is assumed as one 
layer of the plate, and the strains and stresses are calculated with the same way of 
each concrete ply. The second is an integrated method in which the effect of rebar is 
considered by modifying material properties. The smeared method is reasonable for the 
layered model in which the strain of a rebar can be estimated accurately. The 
integrated model is applicable to stress-resultant model in which global response is 
focused rather than individual layer’s response.  

A general configuration of rebar can be shown in Figure 6(a) with the stress-strain 
curve in Figure 6(b). There are some assumptions: (i) rigid bond between the rebar and 
concrete; (ii) linear strain distribution in a section, and (iii) the evenly distributed steel 
reinforcement in an element. The equivalent thickness of rebar layer is simply 
calculated using Eq. (27). 
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          (a) Geometric shape of rebar                   (b) stress-strain curve of steel rebar 

Figure 6 Geometric shape and stress-strain curve of a rebar 
 
 
 
 

3.1 The smeared layer method of rebar reinforcement 
 
A rebar has only one-directional strength and thus the constitutive equation of the 

rebar layer part can be expressed as Eq. (25). The Eq. (2) can be used for 

superposition of the results of a rebar layer. In elastic domain, xE and yE , the moduli of 

constitutive equation, are elastic modulus ( E ) and the tangential modulus ( tE ) is used 
in elasto-plastic domain. 
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0

p
x x xx

p
y y y y

E

E

                         

  
  

(28)

 

where i , i  and 
p

i are incremental stress, strain and plastic strain vectors 
respectively. 

The yield function of steel rebar can be expressed as Eq. (29) at n step, and at the 
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next step, stress, back stresses and plastic deformation are expressed as Eq. (30). In 
the elastic range, the stress and back stress can be easily calculated as Eq. (31). In the 
plastic range, since the yield function should be zero, the incremental plastic 
deformation and stresses can be calculated as Eq. (32) and the stress, back stress and 
plastic deformation at n+1 step can be estimated as in Eq. (29). The elasto-plastic 
tangent modulus is calculated as in Eq. (32). 

 

   , ,          n n n p n n n p
o Hf H (29)

 

where n , n , n p
 are stress, backstress and plastic strain at n step, and o , H  

are initial yield stress, plastic modulus respectively.  
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Elastic predictor  
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In elastic range: 0f   
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In elasto-plastic range: 0f   
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3.2 The integrated section method of rebar reinforcement  

 
The rebar reinforcement increases the strength of concrete plate by the strength of 

itself and the constraint of concrete plate. In elasto-plastic status of a concrete plate, 
one directional deformation can cause expansional deformation of the orthogonal 
direction and thus the steel reinforcement gets some tension and the concrete plate 
has compression at that direction. The constraint of concrete could increase the 
strength of yielding. Therefore, the axial yield strength of a reinforced concrete plate is 
difficult to be estimated using simple analytical equation due to the constraint of rebar 
reinforcement. In this integrated model, the effect of rebar reinforcement is incorporated 
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with the concrete plate as modified equivalent material coefficients. Since the yield 

compressive and tensile strength depends on two parameters ( ,A B ) of the Drucker-

Prager criterion and material coefficients ( ,c  ) have a relation with the two parameters, 
the equivalent material coefficients can be estimated based on the axial behavior of a 
reinforcement concrete plate. In this research, the uni-axial strengths of a reinforced 
concrete plate are estimated by a numerical analysis using the layered model. The uni-
axial tensile and compressive stress resultants of a concrete plate is derived from Eq. 
(6) and expressed as in Eq. (34) using the two parameters of the Drucker-Prager 
criterion. The parameters are estimated based on the uni-axial yield stress resultants 
as in Eq. (35) and the equivalent material coefficient, the cohesion ( c ) and internal 

friction angle ( ), can be estimated by the relation with the two parameters as in Eq. 
(36) and Eq. (37).  
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where ( )oN  and ( )oN  are the tensile and compressive yield strength of a reinforced 
concrete plate, and A  and B are parameters of the Drucker-Prager criterion 
respectively. 

In addition, the elastic modulus is also modified to get the effect of reinforcement as 
in Eq. (38) 

 

 1
eq c c s sE E h E h

h
  (38)

 

where cE and sE are the elastic modulus of concrete and steel , and ch and sh are 
thickness of concrete and steel parts respectively. 
 
 
4. Numerical Examples 
 

4.1 Tests of unit element  
 
Results of the stress resultants yield model based on the Drucker-Prager criterion 

are compared with those of the layered model for a concrete plate nonlinear behavior. 
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Figure 7 Geometry of a steel reinforced concrete plate 

 
 
Table 1 Material coefficient for the Drucker-Prager criterion based on integrated method 

Rebar reinforcement No Rebar 0.5% Rebar 0.75% Rebar 1% Rebar 

Tensile yield strength (Mpa) 728 960 1070 1175 

Compressive yield strength (Mpa) 6900 8540 9350 10160 

Cohesion (Mpa) 4.66 5.96 6.58 7.19 

Internal friction angle 59.78 58.82 58.54 58.38 

Modified elastic modulus (Mpa) 27000 28000 28540 29060 

 

       
(a) Pure axial                                                   (b) Pure bending 

    
(c) Pre-moment axial                                         (d) Pre-axial bending 

Figure 8 Test models of stress resultants yield criterion 
 
 
 

Geometry of reinforced concrete plate and detailed information of reinforced steel rebar 
are described in Figure 7 and loading conditions are explained in Figure 8. The material 
coefficients of concrete based on the Drucker-Prager criterion are initial cohesion (c) 
and initial friction angle (Ф) and both parameters are assumed as c = 4.658 Mpa and Ф 
= 59.78o. Those coefficients are estimated based on the compressive and tensile yield 
strengths. The compressive yield strength (fc) is assumed 34.5 Mpa and the tensile 
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(a) Pure axial loading                      (b) Pure bending loading 

Figure 9 Stress resultants vs. strains in pure loading 
 
 

 
 

(a) Axial with pre-moment(1/2Mp) w/o Rebar     (b) Axial with pre-moment(1/2Mp) w/ Rebar 

Figure 10 Axial stress resultants vs. strain in pre-moment axial loading 
 
 

 
 
(a) Bending with pre-axial (1/2Np(-)) w/o Rebar       (b) Bending with pre-axial(1/2Np(-)) w/ Rebar 

Figure 11 Bending stress resultant vs. rotation in pre-axial bending loading 
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strength (ft) is estimated by 3.64 Mpa using a formula of ACI-318-08 for a design of 

concrete floor systems, (Mpa)t cf 0.62 f . The area ratio of steel reinforcement is around 
1% of concrete section for x and y directions. The elastic modulus of the concrete is 
assumed as E = 2.70ൈ104 Mpa. Generally the concrete does not have strain 
hardening. Therefore, hardening is not considered in these tests. For the layered 
model, steel reinforcement is model as a smeared layer and material nonlinearity of 
rebar is modeled using von-Mises criterion. The elastic modulus and the initial yielding 
stress of reinforced steel are assumed as E = 2.10ൈ105 Mpa and σo = 210 Mpa. For the 
stress-resultant models, steel reinforcement is considered by the integrated section 
method using modified material coefficients of concrete. Those values are estimated by 
Eq. (33) and Eq. (34) and listed in Table 1 according to the area ratio of reinforcement. 
The hardening effect of reinforced steel is not considered.  

The results of stress-resultant model based on the Drucker-Prager yield criterion 
have good agreement with those of the layered model in all unit cases. Those 
comparisons are shown from Figure 9 to Figure 11. The results of pure axial and pure 
bending tests under reinforcement show almost same with each other in Figure 9(a) 
and 9(b). The tensile yield strength of the reinforced concrete plate is around 1170 
N/mm which is similar with a simple summation of that of concrete and steel rebar, 
1148 N/mm. The compressive yield strength of the plate is around 10160 N/mm which 
is much larger than a simple summation of that of concrete and steel rebar, 7320 
N/mm. The increment of 35% in compressive yield strength is due to the orthogonal 
direction’s confining effect by the rebar. 

The comparisons of results of pre-moment axial and pre-axial bending cases are 
shown in Figure 10 and Figure 11. The Figure 10(a) and 11(a) show the results of 
without reinforcement and the comparison results under reinforcement are shown in the 
Figure 10(b) and 11(b). The orthogonal direction confining effect also can be found in 
bending tests shown in Figure 9(b) in which the bending yield strength is larger around 
10%, 106000 N-mm/mm, than a simple summation of concrete and steel strength, 
96150 N-mm/mm. 

The stress-resultant model under several loading tests shows well matched results 
compared with the layered model regardless of rebar reinforcement. From these 
results, the stress-resultant model can be expected to have available accuracy for the 
material nonlinear behavior of a concrete plate.  
 
 
5. Conclusions 
 

A stress-resultant based elasto-plastic analysis for a concrete plate is suggested 
and is compared with the layered model which is commonly used in practical design. A 
yield function based on stress resultants is derived for the Drucker-Prager criterion 
which is widely used for a concrete material. Through a parametric study the basic 
derived yield function is modified. To get reasonable results using the derived yield 

function, the moment calibration parameter k  and the exponent of the moment term 
  are introduced. The general plastic flow rule is applied to this failure function. In 
addition, a steel rebar model is added for the reinforcement of a concrete plate. The 
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smeared layer method is introduced to the layered model and an integrated section 
method using equivalent material coefficients is suggested for the stress-resultant plate 
model. Several tests of unit element show that the proposed method has reasonable 
results under cyclic loading compared with the layered model regardless of 
reinforcement. In the practical example of a concrete bridge, the suggested stress-
resultant model shows available accuracy and efficiency compared with the layered 
model. 
 
 
References 
 
[1] Crisfield, M.A. (1991), Nonlinear Finite Element Analysis of Solid and Structures. 

Vol. 1. John Wiley & Sons Ltd, New York. 
[2] Crisfield, M.A. (1997), Nonlinear Finite Element Analysis of Solid and Structures. 

Vol. 2. John Wiley & Sons Ltd, New York. 
[3] Takeda, T., Sozen, M.A. and Nielsen, N. (1970), Reinforced concrete response to 

simulated earthquakes. J. Struct. Div., ASCE 96(12), 2557-2573. 
[4] Hilmy, S.I. and Abel, J.F. (1985), A strain-hardening concentrated plasticity model for 

nonlinear dynamic analysis of steel buildings. Proc., NUMETA85, Numerical Methods 
in Engineering, Theory and Applications, 1, 303-314.  

[5] Hajjar, J.F. and Gourley, B.C. (1997), A cyclic nonlinear model for concrete-filled 
tubes. I: Formulation. J. Struct. Eng., 123(6), 736-744. 

[6] El-Tawil, S. and Deierlein, G.G. (1999), Strength and ductility of concrete encased 
composite columns. J. Struct. Eng., 125(9), 1009-1019. 

[7] El-Tawil, S. and Deierlein, G.G. (2001a), Nonlinear analysis of mixed steel-concrete 
moment frames. Part I: Beam-coulomb element formulation. J. Struct. Eng., 127(6), 
647-655. 

[8] Spacone, E. and El-Tawil, S. (2004), Nonlinear analysis of steel-concrete composite 
structures: State of the art. Journal of Structural Engineering,130(2), 159-168.  

[9] Kent, D.C. and Park, R. (1971), Flexural members with confined concrete. Journal of 
the Structural Division, 97(7), 1969-1990.  

[10] Mander, J.B., Priestly, M. N. J. and Park, R. (1988), Theoretical stress-strain model 
for confined concrete. J. Struct. Eng., 114(8), 1805-1826. 

[11] Iliushin, A.A. (1956), Plastichnost’, Gostekhizdat, Moscow (in Russian). 
[12] Crisfield, M.A. (1981), Finite element analysis for combined material and geometric 

nonlinearities. In W. Wunderlich et al. (eds). Nonlinear Finite Element Analysis in 
Structural Mechanics, Springer-Verlag, New York, pp. 325-338. 

[13] Shi, G. and Voyiadjis, G.Z. (1992), A simple non‐layered finite element for the 
elasto‐plastic analysis of shear flexible plates. International journal for numerical 
methods in engineering, 33(1), 85-99.  

[14] George Z. Voyiadjis and Pawel Woelke. (2008), Elasto-Plastic and Damage 
Analysis of Plates and Shells. Springer. 

[15] Koechlin, P., Andrieux, S., Millard, A. and Potapov, S. (2008), Failure criterion for 
reinforced concrete beams and plates subjected to membrane force, bending and 
shear. European Journal of Mechanics-A/Solids, 27(6), 1161-1183. 

[16] Bieniek and Funaro, (1976), Elasto-plastic behavior of plates and shells. Technical 

1448



 

 

report DNA 3584A, Weidlinger Associates, New York. 
[17] Armstrong, P.J. and Frederick, C.O. (1966), A Mathematical Representation of the 

Multiaxial Bauschinger Effect. (C.E.G.B report RD/B/N 731. Berkeley Laboratories, 
R&D Department, California.  

[18] Sam Lee (2008), Nonlinear Dynamic Earthquake Analysis of Skyscrapers. 
CTBUH8th World Congress.  

[19] Zhang, Y.X. and Bradford, M.A. (2007), Nonlinear analysis of moderately thick 
reinforced concrete slabs at elevated temperatures using a rectangular layered plate 
element with Timoshenko beam functions. Engineering Structures, 29(10),  2751-
2761. 

[20] Baskar, K., Shanmugam, N.E. and Thevendran, V. (2002), Finite-element analysis 
of steel-concrete composite plate girder. Journal of Structural Engineering, 128(9), 
1158-1168.  

[21] C. Zienkiewicz and R.L. Taylor. (1989), Basic formulation and linear problems In: 
The Finite Element Method, Vol. 1, 4th Edn McGraw-Hill, London. 

[22] Carreira, D.J., & Chu, K.H. (1986), Stress-strain relationship for reinforced concrete 
in tension. In ACI Journal Proceedings (Vol. 83, No. 1). ACI.  

[23] MIDAS NFX manual. MIDAS Information and Technology Ltd., Seoul, Korea 2011. 
 

1449




