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ABSTRACT 
 
     The global increase in energy demands due to growth of world population, 
expansion of industrial activities, progress and development in developing countries 
associated with the alarming increase in greenhouse gases (GHG) alerted the world 
about the eminent risks of the present environment scenario and its disastrous 
implications. This led to enhance research and development activities to supplement 
and possibly substitute the world present and future energy sources with renewable 
and sustainable sources. Solar energy occupies the top of the list of most viable 
sources with relatively well dominated technologies and extensive field of applications 
ranging from low to high temperature as well as direct energy conversion to electricity. 
Cooling usually consumes a lot of energy and represents an essential field of activities 
of vital interest to the society. Solar energy can be harnessed by using some special 
solar collectors to provide electricity directly and/or hot fluids at relatively high 
temperatures such as parabolic-trough concentrating (PTC) systems to provide 
electricity by thermal machines. This paper analyses the geometry influence on the 
optical performance of some designs for this type of collectors for use in absorption 
refrigeration system for a small installation as a residence. The present paper also 
presents a numerical study of the local concentration ratio (LCR) based on the Monte 
Carlo Ray Tracing (MCRT) method. In this study the slope and orientation of one-axis 
tracking system, the ratio of the beam radiation on a slope plane to the horizontal and 
the ratio of hourly to daily diffuse solar radiation is determined.  
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1. INTRODUCTION 
 
     The conventional energy sources have harmful environmental impacts as GHG 
emission. Kalogirou (2004) discusses how renewable energy systems can have 
beneficial impacts on the environment by decreasing environmental pollution and GHG 
emissions, economic impact by creating jobs and income, conservation of natural 
resources especially water and energy and most important of all national accessibility. 
     Solar energy systems can generate thermal and electrical energy from solar 
radiation. Duffie (2013) describes a solar collector as a special kind of heat exchanger 
that collect the radiation heat from the sun and transforms into internal energy of the 
working fluid. Different solar collector types produce different temperature levels. 
Cooling usually consumes a lot of energy, one way to increase the absorbed amount of 
energy is to reduce heat losses from the absorber decreasing its area and keeping the 
heat gain. This can be done by adding an optical device between the source of 
radiation and the absorber. This optical device is a concentrator, it usually has concave 
reflecting surface to intercept and focus the sun’s radiation beam on the absorber. 
     Kalogirou (2004) presents various types of solar thermal collectors. Conventional 
concentrating collectors must follow the apparent movement of the sun across the sky. 
There are two tracking methods, the first is the altazimuth which enables the 
concentrator to follow the sun exactly. The second is the one-axis tracking in which the 
collector tracks the sun in only one direction either from east to west or from north to 
south. 
     Lovegrove (2012) explains that the position of the parabolic-trough collectors must 
be such that the sun vector, the collector focal line and the vector perpendicular to the 
collector aperture plane are in the same plane, otherwise the reflected rays are not 
focused to a unique focal point. For this reason, PTC requires solar tracking system. 
To estimate the optical performance, it is important to evaluate the geometry of the 
collector and possible shades during the day. Jeter (1983) analyzes the influences of 
three factors that reduces the effective aperture of the collector. 
     Jeter (1986) established the first integral of the differential energy flux density for 
trough concentrators, this result includes formulation of the perfect parabolic trough 
collectors with a flat plane and a round receiver centered on the focus. For numerical 
results, the MCRT is detailed by He(2011). This method combined with finite volume 
method is used calculated the non-uniform heat flux distribution considered as the 
boundary condition. 
     Liu (1960) presents relationships that determine statistical distribution of daily total 
and diffuse radiation of some localities in the United States and Canada, knowing the 
direct radiation, while Collares-Pereira (1979) correlates Hottel, Whillier and Liu and 
Jordan between the diffuse and total hourly radiation.  
     The present paper compares the geometrical concentration, the optical performance 
and the effective aperture area for different configurations of PTC with the same length 
and width for use in absorption refrigeration system for a small residential installation. 
The slope and orientation of the tracking system for each representative day of the 
month for the latitude of Campinas, Brazil is also presented. A two dimensional 
numerical approximation of the LCR based on MCRT method is used to analyze the 
influence of these designs on the LCR. Finally, the ratio of the beam radiation on an 
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     The minimum diameter is calculated in terms of the maximum mirror radius and the 
optical cone of an incident beam of solar radiation, Duffie (2013). 
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     The height between the end of the concentrator and the vertex, Lovegrove (2012) is: 
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     The area concentration ratio is the ratio of the aperture area to the absorber area 
and can be calculated by Duffie (2013): 
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     The effect of varying rim angles on the minimum diameter and on the concentration 
is shown in Fig. 2 and 3, respectively.  
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Fig. 2 The effect of varying rim angles on (a) Minimum diameter of the collector (b) 

Concentration of the collector 
 

     The concentration is inversely proportional to the minimum diameter. The best rim 
angle is 90°, because it gives the biggest concentration. On the other hand, in 
manufacturing the configuration uses more material thus more expensive. 
     The design of the concentrators for each rim angle and its corresponding focal point 
is shown in Fig. 3. 
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     The results for each average day of the month are shown in Tab. 1. 
 

Tab.1 Slope and orientation for each day for the Average Day of the Month 
 

Day Slope Orientation 
January 17th 1.99° North 
February 16th 9.95° North 
March 16th 20.49° North 
April 15th 32.32° North 
May 15th 41.70° North 
June 11th 45.99° North 
July 17th 44.09° North 
August 16th 36.36° North 
September 15th 25.12° North 
October 15th 13.31° North 
November 14th 3.99° North 
December 10th 0.14° South 

 
 
     When the declination angle of the sun is smaller than the local latitude, the 
orientation of the collector changes from north to south, if it is located in south 
hemisphere. This occurs only in December for the average day of the month in 
Campinas. 
 
 
     3. DIRECT AND DIFFUSE SOLAR RADIATION 

 
     Duffie (2013) explains the kinds of solar radiation. The direct or beam radiation as 
the radiation that comes direct from the sun, without having been scattered by the 
atmosphere, the diffuse radiation is the solar radiation received from the sun after its 
direction has been changed by scattering by the atmosphere, and total radiation as a 
sum of beam and diffuse radiation on a surface. 
     The ratio of beam radiation on tilted surfaces to the beam radiation on horizontal 
surfaces, Rb, over a time period from w1 to w2 can be approximated by Duffie (2013): 
 

b

a
Rb   (9) 

 
Where a is: 
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Where δ is the declination angle, ϕ is the latitude, β is the slope of the surface and γ is 
the azimuth angle.  
     And the value of b is given by: 
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          Fig. 4 shows the results of this ratio for the average days of the months in 
Campinas. 
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Fig. 4 Hourly ratio of beam radiation on a slope plane to the horizontal 
 

     The ratio increases in the winter months, because the slope is bigger than in the 
summer months. 
     The parabolic concentrator cannot concentrate the diffuse radiation, because it 
comes from different directions, but the receiver absorbs both radiations. For this 
reason, the ratio of the hourly diffuse radiation to the daily diffuse radiation, rd, is 
calculated by: 
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Where w is the hour angle(15° per hour, morning negative and afternoon positive) and 
ws is the sunset hour angle and is calculated by: 
 

 tantansw        (13) 

 
     The results for each average day of the month are shown in Fig. 5. 
 



 

6 8 10 12 14 16 18
0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

r d

Hour

 JAN
 FEB
 MAR
 APR
 MAY
 JUN
 JUL
 AUG
 SEP
 OCT
 NOV
 DEC

 
 

Fig. 5 Ratio of hourly diffuse radiation to daily diffuse radiation 
 

     The ratio is symmetrical at noon. In winter months, the sun rises one hour later and 
sets one hour earlier, as the daily diffuse radiation is divided by fewer hours, its ratio is 
larger than in summer months. 
 
 
4. OPTICAL EFFICIENCY AND GEOMETRY EFFECTS 
 
     The optical efficiency depends on the optical properties of the materials involved, 
the geometry of the collector and the various imperfections arising from the 
construction of the collector. The losses are associated with four parameters: reflectivity, 
intercept factor (geometrical errors collector’s shape, shadowing by the flexible bellows 
and mechanical deformation of the support structure), transmissivity and absorptivity. 
Furthermore, the incidence angle of the beam solar radiation affects those four 
parameters; however, this effect can be quantified by the incidence angle modifier. The 
specifications of the collector are detailed in Tab. 2. 
 

Tab. 2 Optical parameters 
 

Characterization Collector parameters 
Reflector material Aluminium 
Reflectivity 0.95 
Intercept factor 0.91 
Transmissivity of the glass 0.92 
Steel pipe coat Cermet black chrome coating 
Absorptivity 0.95 

 
 



     The angle between the beam radiation on a surface and the normal to that surface 
is called the incidence angle, and can be calculated by the following equation Duffie 
(2013): 
 

      wcoscossinarccos 22       (14) 
 
Where w is the hour angle. 
     The optical performance at noon is calculated with Eq. (15),Lovegrove (2012): 
 

  00, opt      (15) 

 
Where ρ is the reflectivity of the concentrator surface, γ is the intercept factor, τ is the 
transmissivity of the glass of the external evacuated tube and α is the absorptivity of 
the absorber. 
     The optical performance for the other incidence angles is calculated in function of 
the incidence angle modifier Lovegrove (2012). 
 

   Koptopt   0,0,      (16) 

 
     Where K(θ) is the incidence angle modifier and it is calculated with Eq. (17) and (18) 
Lovegrove (2012): 
For (0° <θ< 80°): 
 

  432 *885509.4*618596.3*41.1*423073.21  K (17) 
 

For (85° <θ< 90°): 
 

  0K        (18) 
 
     The effect of the incidence angle on the optical efficiency is shown Fig.6. 
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Fig. 6 Optical efficiency at different incidence angles  



     The polynomial of the incidence angle modifier acts up to 80°.After 85° it drops to 
zero, because after 85° the sun is almost set. Until θ = 45°, the efficiency decreases 
10%, while there is a 15% fall between 60° and 45°, thus after 45° the decrease rate is 
much more. 
     There are three geometric factors that reduce the effective aperture area of the 
collector and hence affecting the optical efficiency. These factors are: the end effect 
(some of the rays reflected near the end of the concentrator cannot reach the receiver), 
shade by bulkheads and shade by neighboring collectors in an array. To avoid the 
shade by neighboring collectors, the minimum distance between the collectors is 
calculated as in Eq. (19) Jeter (1983): 
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Y
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     The maximum β is when the declination angle is 23.45°, in this case, the minimum 
distance between the collectors must be 2.9 m. 
     The other two effects are calculated to determine the effective aperture area Jeter 
(1983). The end effect and the shade area due to bulkheads are calculated as: 
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     The ratio of the effective aperture area to the total aperture area is: 
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Where A is the total aperture area, Ae is the effective area, Ai is the affected area by the 
end effect and Ab is the shade area due to bulkheads. 
     The effective aperture area depends on the incidence and rim angles. 
     Fig. 7 shows that the biggest effective aperture areas are for rim angles of 110° and 
130°, but the difference between them and 90° is not very significant until the incidence 
angle reaches 65°. After an incidence angle of 75°, there isn’t effective area anymore 
for the rim angle of 30°. 
     Finally, the total optical efficiency is a function of the optical efficiency, the incidence 
angle modifier and the ratio of the effective aperture area to the total aperture area 
Jeter (1983). 
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Fig.7 Effective aperture area for different rim angles at different incidence angles  
 
     For the total optical efficiency, the results of optical efficiency shown in Fig. 6 are 
multiplied by the effective aperture area and the results in Fig. 7 and the results are 
plotted in Fig. 8. 
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Fig. 8 Total Optical efficiency for different rim angles at different angles of incidence 
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influence of these configurations on the LCR. It is a statistical method and which 
random sunraysare generated by the computer, if the ray hit the absorber directly or if it 
was redirect by the parabola, the angle where it hit will be counted. Only half parabola 
was calculated, because it is symmetrical. 
     Using geometry knowledge, the equations from He (2011) are adapted for a two 
dimensional study by author. The number of randomly sunrays generated in this 
program is 25000000.  
     Firstly, the position of the ray in y-direction is calculated: 
 

211

Y
y         (24) 

 
Where ξ1is a random number between 0 and 1, so y1 varies between 0 and half width.If 
y1 is less or equal the receiver radius, than z1is calculated by: 
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Where r is the receiver radius. The angle that will be count is: 
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     If y1 is greater than the receiver radius, so it falls on the receiver surface in the point 
(y1,z1), where z1 is calculated by: 
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2
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Where f is the focal length. The ray will be redirect if a second random number, also 
between 0 and 1, is less or equal the reflectivity of the concentrator surface. 
     A deflection angle θ will be considerate as: 
 

sunsun  32      (28) 

 
Where θsun is 16’ and ξ3 is a third random number also between 0 and 1, hence  
-θsun<θ<θsun. 
     When the ray hit the parabola, its direction changes. If the ray hits the receiver will 
be at the point (y2,z2) that satisfies the following system of equations: 
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Where φ is the angle shaped by the segments between the point (y1,z1) and the focal 
point, and between the focal point and the vertex of the parabola. This root-finding 
problem is solved using Newton’s method. 
     The relationship between the heat flux distribution and LCR is as in Eq. (30) He 
(2011): 
 

suni qLCRq .       (30) 

 
Where qi is the heat flux distribution on the receiver and qsun is the direct normal 
insolation. The heat flux distribution can be also calculated by He (2011): 
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sun
ii NS

XYq
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Where pi is an array used to count the rays that hit the absorber, X is the length of the 
parabola, Y is the width, N is the number rays that was used on the code and Si is the 
area of the element that contains pi, it depends on the number of segments the receiver 
is divided. 
 

X
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r
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Where n is the number of segments the receiver is divided. Replacing Eq. (32) and (5) 
in Eq. (31), and comparing to Eq. (30), LCR can be calculated in terms of pi. 
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nGCp
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     To verify the accuracy of the simulation, an ideal PTC with round absorber, with 
geometric concentration (GC) is 20, rim angle of 90° and θsun = 0.0075 rad that was 
adopted by Jeter (1986) is used and the present numerical results are compared with 
Jeter’s analytical results and are shown in Fig. 10. 
     Comparing the analytical and the numerical result, the two curves fallow the same 
trend and the values of both curves are very close, which verify that the present code is 
reliable. 
     In order to compare the LCR for different rim angles, the GC is maintained 20, with 
the same width of 2 m and for the configurations shown in Fig. 3, the numerical results 
are shown in Fig. 11.  
     For smaller rim angles, the LCR reaches larger numbers but concentrated in smaller 
areas, and for bigger rim angles, the LCR covers a larger area. The total LCR is 
practically the same for all angles. As the Fig. 11 shows, all curves have 4 significant 
parts, in the first part, the absorber shades the concentrator, hence the reflection is 
impaired. In the second part the concentration increases until a peak that varies for 
each rim angle, after this peak, the third part is a rapidly decrease and the last part is 
the direct radiation area. 
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is 90°. The total LCR is not affected by the rim angle, but rim angle of 90° gives more 
uniform concentration ratio over the absorber than other angles.  
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