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ABSTRACT 
 

     This paper proposes a structural analysis of a hexapod stage using the Screw 
Theory. This National Institute of Standards and Technology (NIST) flexural hexapod 
stage is actuated by three planar stages and it can achieve high-precision motions in 6 
degrees of freedom (DOF). In this paper, we present an analytical model for deriving 
the stiffness matrix of the platform with respect to the external loading on the top 
platform. This symbolic kinematic model is based on the geometric parameters, the 
material properties and the topology of the platform. This model is used for structural 
analysis and position control of the top platform where the external loading is placed.  
 
KEYWORD: motion stage, flexure mechanism, hexapod platform, stiffness, kinematic 
model 

 
1 INTRODUCTION 

 
     A nanopositioner is a high precision positioning device used in motion control with 
nanometer precision. Most nanopositioners are made of flexure mechanisms, Awtar et 
al. (2007), Venkiteswaran and Su (2015), that are formed by multiple (often identical) 
flexure pivots, leaf springs, or their chains that are designed to produce a defined 
motion upon the application of an appropriate load, Lobontiu (2003). These 
mechanisms have the advantages of no backlash and ultra-high precision. 
Nanopositioners, Wu et al. (2008), Shi and Su (2012), have been widely used in 
precision engineering and play an important role in emerging nanotechnology and 
medicine, Shi et al. (2013) and Shi et al. (2014).  
 
     The modeling and stiffness analysis of the parallel hexapod mechanism have been 
challenging tasks due to their inherent structural complexity and difficulties in modeling 
the motion of 6 degrees of freedom (DOF), Dai et al. (2015). A lot of prior work has 
been done regarding the stiffness analysis of 6DOF stages. FE simulation and physical 
experiments are the two commonly used methods for analyzing the 6DOF stiffness of a 
nanopositioner. Brouwer et al. (2010) modeled and derived the stiffness of a 6DOF 
manipulator by using software SPACAR. Yang et al. (2010) and Yang et al. (2012) 
developed a method to measure in-plane stiffness of a nanopositioner by using atomic 
force microscopy (AFM) and measured the stiffness of the hexapod nanopositioner. 
When being compared with the analytical models, these methods are time consuming, 
costly, and inefficient in the design process. There is relatively less work done in the 
derivation of the analytical 6DOF stiffness matrix due to the structural complexity. Shi 



  

and Su (2013) built an analytical model of the workspace of a meso-scale hexapod 
nanopositioner based on the stiffness of flexures and inverse kinematics. Ji et al. 
(2012) designed a 6DOF nanopositioner and derived a control model based on the 
stiffness, the comb drive force, and the integrated capacitive displacement sensor. Shi 
et al. (2014) built a stiffness based analytical control model for a MEMS hexapod 
nanopositioner. However, there is less work done related to the analysis of applying 
external loading on a hexapod mechanism. 
 
     In this paper, we adopt the Screw Theory to derive a symbolic model of the 6DOF 
stiffness matrix of the hexapod nanopositioner with respect to the external loading.  
This macro-scale monolithic hexapod nanopositioner was previously built by the 
National Institute of Standards and Technology (NIST), USA. The derivation follows a 
bottom-up procedure, which starts from the three locked actuating stages to the end 
effector, the center of the top platform. Based on the model, we analyze the relationship 
between the displacement of the top platform and the external loading. The rest of the 
paper is organized as follows. Section 2 describes the geometric and material 
properties of the hexapod platform. Section 3 presents the Screw Theory and the 
stiffness matrix of single wire flexure. In section 4, we illustrate the topology of the 
hexapod platform according to the external loading. The analytical model of the 
external loading is derived and shown with an example. The conclusion is stated in 
Section 5.  
 
2 KINEMATIC MODEL 
 

     As shown in Fig. 1, the hexapod motion stage is composed of three main parts: 
base stages, struts, and top platform. Three X-Y micro-positioning base stages, which 
can generate motion in two orthogonal directions, are symmetrically positioned on the 
base plane.  

 
 

Figure 1: Setting of the 6 DOF NIST hexapod motion stage. 
 



  

     In this study, we consider the linear actuator is rigid enough and it is locked before 
providing linear motion. We assume the three bottom stages are fully constrained in the 
plane so that the displacement of the top platform is only caused by the deformation of 
the compliant parts. As shown in Fig. 2, we build the coordinate system on the center of 
the top surface of the top platform. The external forces and moments in three directions 
are applied on the coordinate origin.  

 
Figure 2: Schematic drawing of the hexapod mechanism 

 
     For convenience, we define the following parameters for describing the geometry of 
the kinematic model. The struts have a total length L and diameter D, and have a short 
flexure joint of length l  and diameter d at each end. Figure 3 shows the geometrical 

relationship of the twelve points. We denote the position of the six points at the top 
platform and the six at the base stages by Ai, and by Bi, respectively. The distance 
between the neighboring intersecting points of the struts at the top platform is C3. The 
distance between the non-neighbor intersecting points of the struts at the top platform 
is C4. For the base stages, the distance between the neighboring intersecting points of 
the struts is C1. The distance between the non-neighboring intersecting points of the 
struts at the base is C2. These points on the moving platform and the stages can be 
described in the global coordinate frame as  
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where   Z  is the 3-by-3 rotation matrix about the z axis. ar  and br  are the radii of the 

strut attachment points (bottom plates in home position). H is the height of the hexapod 
mechanism from the bottom stage to the top plane of the platform and it is derived as 

the unknown by solving equation     02

1111  LBABA
T . t is the thickness of the top 

platform. Angles i , and i , are tabulated in Table 1. All struts are made of aluminum 

with Young’s modulus of elasticity E=210 GPa, and Poisson’s ratio  = 0.28. 

 
Figure 3: Geometrical layout of the flexure center of the the top platform and the bottom 

stages. 
 
3 STIFFNESS MATRIX OF WIRE FLEXURE 

 
     In order to analyze the impact of the external load applied on the device, we need to 
determine the relationship between deformation and the loading. Here, we apply the 
Screw Theory approach to derive the stiffness matrix and analyze the motion of the top 
platform. This methodology is presented in Su et al. (2011), Su et al. (2012) and Shi 
(2013). For convenience, a brief description of this approach is given below. 
 
     We denote the deformation of a flexure mechanism by a general twist 

 zyxzyxT  ,,,,,ˆ  and the load is denoted by a wrench  
zyxzyx WWWFFFW ,,,,,ˆ  . 

They are related by,  
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where [K] and [C] are six by six stiffness and compliance matrices, respectively.  



  

 
Figure 4: Modeling of a wire flexure based on the Screw Theory  

 
     As shown in Fig. 4, a flexure with circular cross section is fixed on one end. The 
coordinate system is built on the center of the free end. The stiffness matrix of it can be 
written as  
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where 22 / ld ,   12/1x  , are non-dimensional constants determined by the 

geometries and the material properties. 64/4dI z   is the area moments of inertia 

about z axis. E is Young’s module and  = 0.28 is the Poisson’s ratio. After substituting 

the parameters in Table 1, we obtained the compliance matrix as  
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Table1. Geometric dimensions of the hexapod mechanism 
 

mmlmmLmmHmmtmmrmmr ba 4,240,33.215,2.13,92.138,29.64   

mmcmmcmmcmmcmmdmmD 100,20,230,20,3.1,6 4321   

 69=,51=,51=,69=,171=,189= 654321    

 116=,4=,4=,116=,124=,236= 654321    

 
4 STIFFNESS ANALYSIS OF THE NIST HEXAPOD NANOPOSITIONER 

 
     In this section, we derive the stiffness matrix based on the topology of the 
mechanism according to the Screw Theory. 
 

 
Figure 6: Schematic drawing of one strut. 

 

     The compliance matrix of each wire flexure is denoted by [Cw], shown in Eq. (3). The 
compliance matrix of each strut is denoted as [Cs]. As shown in Fig. 6, the strut is 
modeled as a serial chain of a cylindrical rod with diameter D and two wire flexure joints 
with diameter d at both ends. By the equation of serial flexure chain, we derive 
mathematically the overall compliance matrix of a serial flexure chain as,  
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where [Adi] is the so-called 6-by-6 adjoint transformation matrix,  
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     Here [R] is a 3-by-3 rotation matrix. [D] is the skew-symmetric matrix defined by a 
translational vector d. By Eq. (3) and Table 1, we obtain [C1] = [C3] = [Cw]. As shown in 
Fig. 6, the compliance of the compliant cylindrical rod [C2] is obtained by substituting 
the diameter D  and length lL 2  into Eq. (3). The three adjoint matrices are defined by 
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     Again, we can obtain the stiffness matrix by substituting the parameters in Table 1.  
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     The struts are connected to the top platform in parallel. The overall stiffness matrix 
of six parallel flexure chain is calculated as  
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where the adjoint matrices are the coordinate transformation of each strut. As shown in 
Fig. 7, the coordinate transformation of No.4 and No. 5 struts to the center of the top 
platform is calculated by three steps, so the adjoint matrices are defined by the multiply 
of three matrices. No. 6 and No. 2 struts are obtained by a rotation of No.4. No. 1 and 
No.3 struts are obtained by rotation of No. 5. Therefore, the adjoint matrices of these 
struts can be written as. 
 

 
Figure 7. Coordinate transformations of the derivation 
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where the rotation matrices and translational vectors of joint matrices are defined by 
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where the special rotation angles are defined as 
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By substituting the parameters in Table 1, we derived the stiffness matrix as  
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The compliance matrix is the inverse matrix of the stiffness matrix and it is  
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Here, we denote the loading on the top platform by a wrench,  
 

     .),,,,,(=ŴL

zyxzyx MMMFFF    (15) 

 
By Eq. (2), the deformation caused by the wrench can be derived as 
 

     ),,,,,(=Ŵ][T̂ LL

zyxzyxC  .  (16) 

 
For example, when the top platform is loaded with a target sample and its weight is 1 
kg, the loading wrist can be written as 

     .)0,0,0,8.9,0,0(=ŴL      (17) 

 
From Eq. (16), the motion caused by the target sample is 
 

     )451.1,0,0,0,0,0(=T̂L  E .    (18) 

 
This means the hexapod moves 1.51E-4 mm in the opposite y direction from the 
original position before the hexapod is actuated by the three planar stages. 
 
5 CONCLUSIONS 

 
     A modeling is proposed for the derivation of the 6DOF stiffness matrix of a hexapod 
nanopositioner with respect to the external loadings. The derivation process can be 
applied to the stiffness analysis of other 6DOF compliant mechanisms. By means of the 
Screw Theory, the topology is analyzed and the analytical model is derived based on 
the geometric dimensions, and material properties. This model is used for building the 
stiffness-based control. When combing the platform motion due to the external loading 
and the position control from the three actuation stages, a forward kinematic control 
can be derived, especially when position sensors are not available for feedback control. 
The model is also useful for the derivation of the allowed loading space with respect to 
the workspace of the hexapod nanopositioner. 
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