

Learning of inverse kinematics using neural networks and its
application to kinematic control of position-based servo motor

*Fusaomi Nagata1), Shota Inoue2), Satoru Fujii3), Akimasa Otsuka4),

Keigo Watanabe5) and Maki K. Habib6)

1), 2), 3), 4) Department of Mechanical Engineering, Faculty of Engineering, Tokyo
University of Science, Yamaguchi, Japan

5) Graduate School of Natural Science and Technology, Okayama University
6) School of Sciences and Engineering, The American University in Cairo

1) nagata@rs.tus.ac.jp; 4) otsuka_a@rs.tus.ac.jp
5) watanabe@sys.okayama-u.ac.jp; 6) maki@aucegypt.edu

ABSTRACT

 Generally, in making neural networks learn nonlinear relations effectively, it is
desired to have proper training set. The training set consists of multiple pairs of an
input and an output vectors. Each input vector is introduced to the input layer for
forward computation and the paired output training vector is compared with the yielded
vector from the output layer. Then, weights between neurons are updated using a back
propagation algorithm in backward calculation. The time required for the learning
process depends on the number of total weights in the neural network and that of the
input-output pairs in the training set. In the proposed learning process, after certain
number of iteration, input-output pairs having the worse errors are extracted from the
original training set and form a new temporary set. From the following iteration, the
temporary training set is applied instead of the original set. In this case, only pairs with
worse errors are used for updating the weights until the mean value of errors decreases
to a desired level. Once the learning is conducted using the temporary set, the original
training set is applied again instead of the temporary set. It is expected by alternately
applying the above two types of training sets for iterative learning the convergence time
can be efficiently reduced. The effectiveness is demonstrated through simulation
experiments using a kinematic model of a leg with four-DOFs. Additionally, when the tip
of the leg is controlled kinematically in Cartesian space, an inverse Jacobian matrix is
needed. However, the calculation of the inverse Jacobian is not easy. Hence, neural
networks based inverse kinematics is used to implement the function of inverse
Jacobian to overcome the complexity.

1) Professor
2) Undergraduate Student
3) Undergraduate Student
4) Doctor
5) Professor
6) Professor

1. INTRODUCTION

When designing a serial link structure as shown in Fig. 1 for a multi-legged robot,
first of all, its inverse kinematics problem must be solved. Hoang et al. proposed a
differential kinematics algorithm to generate omnidirectional walking trajectory of a leg
based on backstepping control using Lyapunov stability. Simulation results for walking
motion of one leg of the 6LR were shown to prove the effectiveness and applicability of
the proposed controller (Hoang 2014). Tejomurtula and Kak proposed a solution of
inverse kinematics concerning a simple two link manipulator (Tejomurtula 1999). Duka
designed a feedforwad neural network to solve the inverse kinematics problem of a
three-link planar manipulator (Duka 2014). Also, Maeda et al. designed a position
control scheme for actual robot systems using high dimensional neural networks, in
which complex-valued neural network and quaternion neural network learned the
inverse kinematics of the robot systems. Two dimensional SCARA robot and three
dimensional robot were well controlled using the inverse kinematics (Maeda 2014).

Generally, in making neural networks learn nonlinear relations suitably, desired
training set prepared in advance is used. The training set consists of multiple pairs of
an input vector and an output one. Each input vector is given to the input layer for
forward calculation and the paired output vector is compared with the vector yielded
from the output layer. Also, backward calculation means updating the weights using a
back propagation algorithm. One cycle consists of one forward calculation and
backward one. The time required for the learning process of the neural networks
depends on the number of total weights in the neural networks and the one of the input-
output pairs in the training set. This paper describes neural networks with efficient
weights tuning ability in order to effectively learn the inverse kinematics of a leg kit with
multi-DOFs.

In the proposed learning process, after certain number of iteration, input-output
pairs having the worse errors are extracted from the original training set and form a
new temporary set. Note that an iteration of learning uses all pairs in the training set.
Then, from the following iteration, the temporary set is applied instead of the original set.
In this case, only pairs with worse errors are used for updating weights until the mean
value of errors reduces to a desired level. Once the learning is conducted using the
temporary training set, the original set is applied again instead of the temporary set. It is
expected by alternately giving the two kinds of training sets the convergence time can
be efficiently reduced. The effectiveness is proved through simulation experiments
using a kinematic model of a leg with four-DOFs.

Additionally, when the tip of the leg with a serial link structure is controlled
kinematically in Cartesian space, an inverse Jacobian matrix is needed to generate
velocities in joint space. However, the calculation of the inverse Jacobian is not easy.
Hence, neural networks based inverse kinematics is used to implement the function of
Jacobian to overcome the complexity.

2. LEG WITH FOUR-DOFS AND ITS FORWARD KINEMATICS

Generally, multi-legged robot has multiple legs with a serial link structure. Figure
2 shows an example of a leg with four-DOFs, which is used for graduation study of
undergraduate students (Nagata 2013). Five coordinate systems

)(40  kzyx kkkk

are assigned at each joint. The position of the arm tip in base frame 0000 zyx is

defined with Tzyx][x . Table 1 tabulates the Denavit-Hartenberg (DH) notation
extracted from the leg with four joints. a is the link length which is the distance between
two adjacent z-axes measured along x-axis,  is the link twist angle between two
adjacent z-axes measured around x-axis, d is the link offset which is the distance
between two adjacent x-axes measured along z-axis and  is the joint angle between
two adjacent x-axes measured around z-axis. Actually, Fig. 2 shows the initial pose of
the leg with the angles of TT][][00004321   . The homogeneous transform k

k T1

using the four parameters is written by

z0

x0 y1
x1

y2
x2

y3

x3

Fig. 1 A serial link structure with four-DOFs.

l1 l2 l3

z0
z1 z2

x0

y0

x1

y1

x2

y2

z3

x3

y3

Tip of leg

z4

x4

y4

l4

         

Fig. 2 Kinematics model of the leg with four-DOFs.

Table 1 Denabit-Hartenberg notation designed for the leg with four joints.
























1000

0
Rot00Trans00TransRot1

dCS

aSSCCCS

aCSSCSC

),x(),,a()d,,(),z(k
k







T

 (1)

so that, 4

0T

is obtained by

















 



1000

03231

12221

11211

4
3

3
2

2
1

1
0

4
0

zRR

yCRR

xSRR





TTTTT

(2)

where
)()(4313214321321411  SSCCSCSSSCCCCCR 

 (3)

)()(3213214321321412  SCCCSCCCCCSSCSR 

 (4)

)SCSCSS(S)SSSCCS(CR 3213214321321421  

 (5)

)SCSCSS(C)CCSSSS(SR 3213214321321422  

 (6)

)SCCS(C)CCSS(SR 323243232431  

 (7)

)CCSS(C)SCCS(SR 323243232432  

 (8)

)SSCSCSCSSCCC(Cl

)SSCC(ClCClClx

43243243243214

32321321211









 (9)

)SSCSCSCSSCCC(Sl

)SSCC(SlCSlSly

43243243243214

32321321211









 (10)

)CCSS(Sl)SCCS(Cl)SCCS(lSlz 3232443232443232322   (11)

3. DESIGN OF NEURAL NETWORK-BASED INVERSE KINEMATICS

 For example, an original mobile robot can be designed with the leg module
shown in Fig. 1. In this paper, Eq. (2) for 34  x is called the forward kinematics

)(fkinex and can be analytically calculated. On the contrary 43  x is to

be the inverse kinematics)(xikine . It is not easy but complex to obtain the
analytical solutions of the inverse kinematics. In this section, the mapping of inverse
kinematics is tried to be acquired in the neural networks shown in Fig. 3. The number of
the hidden layers and that of neurons are not important for researching the weights
tuning method proposed in the next section. This means that they are out of evaluation,
so that two hidden layers and 30 neurons were tentatively set. After here, the neural
networks are called the NN.

Input layer 1st hidden layer 2nd hidden layer output layer

.

.

.
.
.
.

1nn

2nn

3nn

4nn

dx

dy

dz

Fig. 3 Neural networks with three inputs of 3x and four outputs 4nn .

 3.1 Neural Networks Leaned with Randomly Prepared Training Set

Figure 4 shows training set)(10013  jjx

composed of 100 samples

representing the relations)(jj fkine x

between 4j

in joint space and 3jx in

Cartesian space, which are randomly generated by using the forward kinematics. The
implicit relation of inverse kinematics that Fig. 4 has, is tried to be learned with the NN
illustrated in Fig. 3. The NN has four layers where the input layer has three units of jx

and the output layer has four units of j . The first and second hidden layers have thirty

units, respectively.
After passing enough learning process using the training set, the performance of

the trained NN was evaluated using the training test set along the rectangle path in Fig.
4. Figure 5 shows the result, in which markers ‘+’ are the training test set

)(12013  jdjx

for the input layer of the NN. Also ‘x’ are the output of forward

kinematics)(fkine jnn . Note that jnn is the output from the NN in response to djx . It is

recognized from the results that the NN learned with the training set shown in Fig. 4
performs a passable generalization for inverse kinematics but some small errors are
observed.

0.4
0.6

0.8
1.0

1.2
1.4

-1.0

1.0

-0.5

0.5
0.0

-1.0

-0.8

-0.6

-0.4

-0.2

0

x0 [m]
y0 [m]

z 0
[m

]

Fig. 4 Training set 3jx

representing the relation)(jj fkine x

between 4j

in

joint space and 3jx , in Cartesian space, which are prepared randomly.

0.5
0.6

0.7
0.8

0.9

0.1

0.5

-1.1

-1.0

-0.9

-0.8

-0.7

0.4

0.3
0.2

-1.2

x0 [m]
y0 [m]

z 0
[m

]

Fig. 5 Markers ‘+’ are the training test set djx for the NN. Also ‘x’ are the output of

forward kinematics)(nnjfkine  . Note that jnn is the output from the forward calculation

of the NN when djx is given to the input layer.

 3.2 Neural Networks Leaned with Regularly Prepared Training Set

 In this subsection, the performance of the NN learned with regularly prepared
training set (60 pairs of jx

and j) is evaluated. Figure 6 shows the training set

representing a path consisting of)(601  jjx , i.e., the sampled number for training
set is 60. The NN shown in Fig. 3 was learned with the set until the error satisfactorily
converged. Figure 7 shows the performance result of the trained NN. Marker ‘+’ in the

upper figure are training test set)(3001  jdjx for the NN. Also,‘x’in the lower

figure are the output of forward kinematics)(nnjfkine  . Note that jnn is the output from

the forward calculation of the NN when)(3001  jdjx is given to the input layer. It is
recognized from the result that the NN learned with the training set shown in Fig. 6
performs a desirable generalization for inverse kinematics.

0.5
0.6

0.7
0.8

0.9

0.1

0.5

-1.5

-1.0

-0.5

0.0

0.5

0.4
0.3

0.2 x0 [m]y0 [m]

z 0
[m

]

Fig. 6 Training set representing the relation between 4j and 3jx , which are

prepared regularly.

0.5
0.6

0.7
0.8

0.9

0.1

0.5

-1.5

-1.0

-0.5

0.0

0.5

0.4
0.3

0.2 x0 [m]y0 [m]

z 0
[m

]

0.5
0.6

0.7
0.8

0.9

0.1

0.5

-1.5

-1.0

-0.5

0.0

0.5

0.4
0.3

0.2 x0 [m]y0 [m]

z 0
[m

]

(a) Input xdj given to NN

(b) Output xnnj generated from NN and forward kinematics

Fig. 7 Marker ‘+’ in the upper figure are the training test set djx for NN. Also ‘x’ in the

lower figure are the output jx of forward kinematics)(fkine jnn . Note that jnn is the
output from the forward calculation of the NN when djx is given to the input layer.

4. EFFICIENT LEARNING ABILITY

 4.1 In Case of Fundamental Learning Method

When the back propagation algorithm is used for adjusting weights in neural
networks, it is serious problem that much time is required for satisfactory convergence.
Here, an efficient training method is introduced by using the case shown in Fig. 6. First

of all, error iE for criterion at the i-th learning procedure was defined by





60

160

1

j

ji eeE (12)

where je is the error in case that the j-th sample, i.e., a pair of jx and j

in training set

is given to input and output layers, which is obtained by





4

1

2
nn

k

jkjkj)(e  (13)

where 4j and 4jnn are the training vector for the output layer and the actual

output from the NN, respectively.)k(k 41  is the number of each joint.)j(j 601  is
the sampled number in the training set. The learning, i.e., the tuning of weights, was
continued until the following condition is satisfied.

di EE  (14)

where dE is the maximum allowable error set in advance.
 In the conventional learning method used in section 3.2, all samples in the
training set, i.e., sixty pairs, were sequentially given for updating weights. Figure 8
shows the learning result in case of section 3.2, in which sixty times of weights updating
by using a back propagation algorithm were conducted in one learning procedure on
the horizontal axis. In other words, one learning procedure means one iteration using
sixty pairs. Also note that one weights updating procedure consists of a pair of a
forward propagation to calculate the error and a back propagation to update all weights
based on the error. It was confirmed that totally 22,810 × 60 = 1,368,600 times of
weights updating were conducted and the total calculation time was 8,351 seconds. In
this case, the desired maximum allowable error dE was set to 0.02. The specification of
CPU was Intel(R) Core(TM) i3 560 3.33 GHz.

0 5000 10000 15000 20000

0.5

0.4

0.3

0.2

0.1

0

Learning counter i

E
rr

or

E
i

Fig. 8 An example of learning result using a conventional method, in which the desired
maximum allowable error dE is set to 0.02.

 4.2 In Case of Proposed Efficient Learning Method

On the other hand, in our proposed method, a new training set consisting of
pairs of input lx and output l , that have not been well trained, is extracted from the
original training set. The condition of the extraction is given by

sdeeel  (15)

where





4

1

2
nn

k

lklkl)(e 
 (16)





60

1

2
sd

60

1

j

j)ee(e (17)

where sde

is the standard deviation of)(601  jej . The pairs of lx and l satisfying

Eq. (15) are extracted and form a new training set with less number of pairs than that of
the original training set, i.e., 60. When this new training set is applied instead of the

original set, the error iE
~

 at the i-th learning procedure, i.e., iteration, is calculated by





m

l

li e
m

E
~

1

1
 (18)

where m is the number of the pairs extracted from the original set based on Eq. (15). In

our proposed method,
 iE and iE

~
 are alternately used for the evaluation of

convergence at the i-th learning procedure. Figure 9 illustrates the concept of the
proposed efficient learning process, in which the original training set and the extracted
one are alternately applied for 200 times of iterative learning, respectively. The vertical
axis means the number of the pairs in the training set.

Iterative learning count

N
um

be
r

of
 p

ai
rs

 in
 tr

ai
ni

ng
 s

et

Original
training

set

Extracted
training

set

Original
training

set

Extracted
training

set

0 200 400 600 800 1000

Original
training

set

Extracted
training

set

Fig. 9 Image of the proposed learning process, in which original training set and
extracted one are alternately applied to the NN for 200 times of iterative learning,
respectively.

Then, the proposed method was applied to the same problem explained in
section 3.2 to evaluate the effectiveness. Figure 10 shows the learning result until iE

reached to 0.02, in which sequential 100 times of iE and 1,000 times of iE
~

 are used
alternately and repeatedly. It is observed that totally 650,220 times of weights updating
were conducted and the calculation time largely decreased to 4,096 seconds.

0 5000 10000 15000 20000

0.5

0.4

0.3

0.2

0.1

0

Learning counter i

E
rr

or
 E
i
an

d
E
i~

Fig. 10 Learning result using the proposed method, in which original training set and
extracted one are alternately applied to the NN for 100 and 1000 times of iterative
learning, respectively.

5. KINEMTIC CONTROL OF THE LEG

5.1 Jacobian of the Leg

When the tip of the leg is controlled kinematically in Cartesian space, Jacobian
matrix is needed. By differentiating Eqs. (9), (10) and (11) by time, the following relation
is obtained.





















































4

3

2

1

343332

24232221

14131211

0



















JJJ

JJJJ

JJJJ

z

y

x

 (19)

where

)SSCSSCSSCSSSCCCS(l

)SSCC(SlSSlSlJ

43214321432143214

3232132121111









 (20)

)SSSCSCCCCSCCCCSC(l

)SCCS(ClSClJ

43214321432143214

32321321212









 (21)

)SSSCSCCCCSCCCCSC(l

)SCCS(ClJ

43214321432143214

32321313









 (22)

)SSSCSCCCCSCCCCSC(lJ 4321432143214321414  

 (23)

)SSCCSCSCCSSCCCCC(l

)SSCC(ClCClClJ

43214321432143214

3232132121121









 (24)

)SSSSSCCSCSCSCCSS(l

)SCCS(SlSSlJ

43214321432143214

32321321222









 (25)

)SSSSSCCSCSCSCCSS(l

)SCCS(SlJ

43214321432143214

32321323









 (26)

)SSSSSCCSCSCSCCSS(lJ 4321432143214321424  

 (27)

)CSSCCCSSCSCS(l

)SSCC(lClJ

4324324324324

323232232









 (28)

)CSSCCCSSCSCS(l)SSCC(lJ 43243243243243232333  

 (29)

)SSCSCSCSSCCC(lJ 432432432432434  

 (30)

Here, for example, a constraint condition is considered. The condition is that the
orientation of the leg tip is fixed to the ground as given by

)c(c const.432  

 (31)

so that
0432   

 (32)

By including Eq. (32) into Eq. (19),



























































4

3

2

1

343332

24232221

14131211

1110

0

0 


















JJJ

JJJJ

JJJJ

z

y

x

 (33)

is obtained, in which Jacobian)(J

is defined as





















1110

0 343332

24232221

14131211

JJJ

JJJJ

JJJJ

)(J (34)

In order to conduct the kinematic control, desired relative position x should be

designed in Cartesian space and be transformed into relative angle  in joint space
with)(1J . However, since the calculation of)(1J is considerably complicated, an
easy method to generate  with the NN shown in Fig. 3 is introduced.

5.2 Kinematic Control without Inverse Jacobian)(1J

It is assumed that)(k and)(kx are the position vectors in joint and Cartesian
spaces, respectively, so that

)}({)(kfkinek x (35)

where k denotes the discrete time. The desired movement)(kdx in Cartesian space
is written by

)()()(1 kkk ddd xxx (36)

To conduct the above motion, the following movement in joint space can be generated
using the trained NN.

)}1({)}({)(_nn_nn  kikinekikinek ddd xx (37)

where the function)}({)(_nnnn kikinek dx means the mapping of inverse kinematics
through the NN shown in Fig. 3. Through the proposed procedure, the desired
movement)(kd for kinematic control can be generated without using)(1J .

6. CONCLUSIONS

 In this paper, learning of inverse kinematics using neural networks with efficient
weights tuning ability has been described for a serial link structure. Generally, in
making neural networks learn a relation among multi inputs and outputs, a desired
training set prepared in advance is used. The training set consists of multiple pairs of
an input and an output vectors. Each input vector is introduced to the input layer for
forward computation and the paired output vector is compared with the yielded vector
from the output layer in terns. The time required for the learning process of the neural
networks depends on the number of total weights in the neural networks and that of the

input-output pairs in the training set.
This paper has introduced neural networks with efficient weights tuning ability in

order to effectively learn the inverse kinematics of a leg kit with multi-DOFs. In the
proposed learning process, input-output pairs, which have the worse errors in learning
process, are extracted from the original training set and form a new temporary training
set. From the following iteration of learning, the temporary training set is applied instead
of the original one. That means only pairs with worse errors are used for updating
weights until the mean value of errors decrease to a desired level. Once the learning
process is conducted using the temporary training set, the original training set is
applied again instead of the temporary set. By repeatedly using these two training sets
alternately, the convergence time could be efficiently reduced. The effectiveness was
proved through simulation experiments using a kinematic model of a leg with four-
DOFs.

Additionally, when the tip of the leg with a serial link structure is controlled
kinematically in Cartesian space, an inverse Jacobian matrix is needed to generate
velocities in joint space. However, the calculation of the inverse Jacobian is not easy.
Hence, neural networks based inverse kinematics was introduced to overcome the
complexity.

REFERENCES

Duka, A.V. (2014), “Neural network based inverse kinematics solution for trajectory

tracking of a robotic arm,” Procedia Technology, 12, 20–27.
Hoang, G, Min, J.H., Lee, G.M., Jun, B.H., Kim H.K. and Kim, S.B. (2014), “Omni-

directional walking control for a six-legged robot using differential kinematics
algorithm,” Procs. of 2014 14th International Conference on Control, Automation and
Systems (ICCAS 2014), 1163–1168.

Maeda, Y, Fujiwara, T. and Ito, H. (2014), “Robot Control Using High Dimensional
Neural Networks,” Procs. of SICE Annual Conference 2014 -International
Conference on Instrumentation, Control, Information Technology and System
Integration-, 738–743.

Nagata, F., Otsuka, A., Sakakibara, K., Watanabe, K., Habib, M.K. (2013), “Experiment
Systems Using Three Types of Motors for Biomimetic Machine Research,” Procs. of
SICE Annual Conference 2013 -International Conference on Instrumentation,
Control, Information Technology and System Integration-, 2711–2717.

Tejomurtula, S. and Kak, S. (1999), “Inverse kinematics in robotics using neural
networks,” Information Sciences, 116, 147–164.

