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ABSTRACT 
 

     Generally, in making neural networks learn nonlinear relations effectively, it is 
desired to have proper training set. The training set consists of multiple pairs of an 
input and an output vectors. Each input vector is introduced to the input layer for 
forward computation and the paired output training vector is compared with the yielded 
vector from the output layer. Then, weights between neurons are updated using a back 
propagation algorithm in backward calculation. The time required for the learning 
process depends on the number of total weights in the neural network and that of the 
input-output pairs in the training set. In the proposed learning process, after certain 
number of iteration, input-output pairs having the worse errors are extracted from the 
original training set and form a new temporary set. From the following iteration, the 
temporary training set is applied instead of the original set. In this case, only pairs with 
worse errors are used for updating the weights until the mean value of errors decreases 
to a desired level. Once the learning is conducted using the temporary set, the original 
training set is applied again instead of the temporary set. It is expected by alternately 
applying the above two types of training sets for iterative learning the convergence time 
can be efficiently reduced. The effectiveness is demonstrated through simulation 
experiments using a kinematic model of a leg with four-DOFs. Additionally, when the tip 
of the leg is controlled kinematically in Cartesian space, an inverse Jacobian matrix is 
needed. However, the calculation of the inverse Jacobian is not easy. Hence, neural 
networks based inverse kinematics is used to implement the function of inverse 
Jacobian to overcome the complexity.  
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1. INTRODUCTION 
 

When designing a serial link structure as shown in Fig. 1 for a multi-legged robot, 
first of all, its inverse kinematics problem must be solved. Hoang et al. proposed a 
differential kinematics algorithm to generate omnidirectional walking trajectory of a leg 
based on backstepping control using Lyapunov stability. Simulation results for walking 
motion of one leg of the 6LR were shown to prove the effectiveness and applicability of 
the proposed controller (Hoang 2014). Tejomurtula and Kak proposed a solution of 
inverse kinematics concerning a simple two link manipulator (Tejomurtula 1999). Duka 
designed a feedforwad neural network to solve the inverse kinematics problem of a 
three-link planar manipulator (Duka 2014). Also, Maeda et al. designed a position 
control scheme for actual robot systems using high dimensional neural networks, in 
which complex-valued neural network and quaternion neural network learned the 
inverse kinematics of the robot systems. Two dimensional SCARA robot and three 
dimensional robot were well controlled using the inverse kinematics (Maeda 2014).  

Generally, in making neural networks learn nonlinear relations suitably, desired 
training set prepared in advance is used. The training set consists of multiple pairs of 
an input vector and an output one. Each input vector is given to the input layer for 
forward calculation and the paired output vector is compared with the vector yielded 
from the output layer. Also, backward calculation means updating the weights using a 
back propagation algorithm. One cycle consists of one forward calculation and 
backward one. The time required for the learning process of the neural networks 
depends on the number of total weights in the neural networks and the one of the input-
output pairs in the training set. This paper describes neural networks with efficient 
weights tuning ability in order to effectively learn the inverse kinematics of a leg kit with 
multi-DOFs.  

In the proposed learning process, after certain number of iteration, input-output 
pairs having the worse errors are extracted from the original training set and form a 
new temporary set. Note that an iteration of learning uses all pairs in the training set. 
Then, from the following iteration, the temporary set is applied instead of the original set. 
In this case, only pairs with worse errors are used for updating weights until the mean 
value of errors reduces to a desired level. Once the learning is conducted using the 
temporary training set, the original set is applied again instead of the temporary set. It is 
expected by alternately giving the two kinds of training sets the convergence time can 
be efficiently reduced. The effectiveness is proved through simulation experiments 
using a kinematic model of a leg with four-DOFs. 

Additionally, when the tip of the leg with a serial link structure is controlled 
kinematically in Cartesian space, an inverse Jacobian matrix is needed to generate 
velocities in joint space. However, the calculation of the inverse Jacobian is not easy. 
Hence, neural networks based inverse kinematics is used to implement the function of 
Jacobian to overcome the complexity. 
 
 
 
 
 



2. LEG WITH FOUR-DOFS AND ITS FORWARD KINEMATICS 
 

Generally, multi-legged robot has multiple legs with a serial link structure. Figure 
2 shows an example of a leg with four-DOFs, which is used for graduation study of 
undergraduate students (Nagata 2013). Five coordinate systems

 
)( 40  kzyx kkkk  

are assigned at each joint. The position of the arm tip in base frame 0000 zyx  is 

defined with Tzyx ][x . Table 1 tabulates the Denavit-Hartenberg (DH) notation 
extracted from the leg with four joints. a is the link length which is the distance between 
two adjacent z-axes measured along x-axis,  is the link twist angle between two 
adjacent z-axes measured around x-axis, d is the link offset which is the distance 
between two adjacent x-axes measured along z-axis and  is the joint angle between 
two adjacent x-axes measured around z-axis. Actually, Fig. 2 shows the initial pose of 
the leg with the angles of TT ][][ 00004321   . The homogeneous transform k

k T1
 

using the four parameters is written by 
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Fig. 1 A serial link structure with four-DOFs. 
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Fig. 2 Kinematics model of the leg with four-DOFs. 
 



Table 1 Denabit-Hartenberg notation designed for the leg with four joints. 
 

 
 
 
























1000

0
Rot00Trans00TransRot1

dCS

aSSCCCS

aCSSCSC

),x(),,a()d,,(),z(k
k







T
   

   (1) 

 
so that, 4

0T
 
is obtained by 

















 



1000

03231

12221

11211

4
3

3
2

2
1

1
0

4
0

zRR

yCRR

xSRR





TTTTT
                                         

(2) 

where 
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3. DESIGN OF NEURAL NETWORK-BASED INVERSE KINEMATICS 
 
 For example, an original mobile robot can be designed with the leg module 
shown in Fig. 1. In this paper, Eq. (2) for 34  x is called the forward kinematics 

)(fkinex and can be analytically calculated. On the contrary 43  x  is to 

be the inverse kinematics )(xikine . It is not easy but complex to obtain the 
analytical solutions of the inverse kinematics. In this section, the mapping of inverse 
kinematics is tried to be acquired in the neural networks shown in Fig. 3. The number of 
the hidden layers and that of neurons are not important for researching the weights 
tuning method proposed in the next section. This means that they are out of evaluation, 
so that two hidden layers and 30 neurons were tentatively set. After here, the neural 
networks are called the NN.  
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Fig. 3 Neural networks with three inputs of 3x  and four outputs 4nn . 

 
 
     3.1 Neural Networks Leaned with Randomly Prepared Training Set 
 

Figure 4 shows training set )( 10013  jjx
 
composed of 100 samples 

representing the relations )( jj fkine x
 
between 4j  

in joint space and 3jx  in 

Cartesian space, which are randomly generated by using the forward kinematics. The 
implicit relation of inverse kinematics that Fig. 4 has, is tried to be learned with the NN 
illustrated in Fig. 3. The NN has four layers where the input layer has three units of jx  

and the output layer has four units of j . The first and second hidden layers have thirty 

units, respectively. 
After passing enough learning process using the training set, the performance of 

the trained NN was evaluated using the training test set along the rectangle path in Fig. 
4. Figure 5 shows the result, in which markers ‘+’ are the training test set 



)( 12013  jdjx
 
for the input layer of the NN. Also ‘x’ are the output of forward 

kinematics )(fkine jnn . Note that jnn  is the output from the NN in response to djx . It is 

recognized from the results that the NN learned with the training set shown in Fig. 4 
performs a passable generalization for inverse kinematics but some small errors are 
observed. 
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Fig. 4 Training set 3jx

 
representing the relation )( jj fkine x

 
between 4j  

in 

joint space and 3jx , in Cartesian space, which are prepared randomly. 
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Fig. 5 Markers ‘+’ are the training test set djx  for the NN. Also ‘x’ are the output of 

forward kinematics )( nnjfkine  . Note that jnn  is the output from the forward calculation 

of the NN when djx is given to the input layer. 
 
 
     3.2 Neural Networks Leaned with Regularly Prepared Training Set 
 
 In this subsection, the performance of the NN learned with regularly prepared 
training set (60 pairs of jx

 
and j ) is evaluated. Figure 6 shows the training set 

representing a path consisting of )( 601  jjx , i.e., the sampled number for training 
set is 60. The NN shown in Fig. 3 was learned with the set until the error satisfactorily 
converged. Figure 7 shows the performance result of the trained NN. Marker ‘+’ in the 



upper figure are training test set )( 3001  jdjx  for the NN. Also,‘x’in the lower 

figure are the output of forward kinematics )( nnjfkine  . Note that jnn  is the output from 

the forward calculation of the NN when )( 3001  jdjx  is given to the input layer. It is 
recognized from the result that the NN learned with the training set shown in Fig. 6 
performs a desirable generalization for inverse kinematics. 
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Fig. 6 Training set representing the relation between 4j  and 3jx , which are 

prepared regularly. 
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(a) Input xdj given to NN

(b) Output xnnj generated from NN and forward kinematics
 

 
Fig. 7 Marker ‘+’ in the upper figure are the training test set djx  for NN. Also ‘x’ in the 

lower figure are the output jx  of forward kinematics )(fkine jnn . Note that jnn  is the 
output from the forward calculation of the NN when djx  is given to the input layer.  
 
 
4. EFFICIENT LEARNING ABILITY 
 
     4.1 In Case of Fundamental Learning Method 
 

When the back propagation algorithm is used for adjusting weights in neural 
networks, it is serious problem that much time is required for satisfactory convergence. 
Here, an efficient training method is introduced by using the case shown in Fig. 6. First 



of all, error iE  for criterion at the i-th learning procedure was defined by 
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where je  is the error in case that the j-th sample, i.e., a pair of jx  and j  

in training set 

is given to input and output layers, which is obtained by 
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where 4j  and 4jnn  are the training vector for the output layer and the actual 

output from the NN, respectively. )k(k 41   is the number of each joint. )j(j 601   is 
the sampled number in the training set. The learning, i.e., the tuning of weights, was 
continued until the following condition is satisfied.

 
 

 

di EE                                                                (14) 
 
where dE  is the maximum allowable error set in advance. 
 In the conventional learning method used in section 3.2, all samples in the 
training set, i.e., sixty pairs, were sequentially given for updating weights. Figure 8 
shows the learning result in case of section 3.2, in which sixty times of weights updating 
by using a back propagation algorithm were conducted in one learning procedure on 
the horizontal axis. In other words, one learning procedure means one iteration using 
sixty pairs. Also note that one weights updating procedure consists of a pair of a 
forward propagation to calculate the error and a back propagation to update all weights 
based on the error. It was confirmed that totally 22,810 × 60 = 1,368,600 times of 
weights updating were conducted and the total calculation time was 8,351 seconds. In 
this case, the desired maximum allowable error dE  was set to 0.02. The specification of 
CPU was Intel(R) Core(TM) i3 560 3.33 GHz. 
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Fig. 8 An example of learning result using a conventional method, in which the desired 
maximum allowable error dE  is set to 0.02. 



     4.2 In Case of Proposed Efficient Learning Method 
 

On the other hand, in our proposed method, a new training set consisting of 
pairs of input lx  and output l , that have not been well trained, is extracted from the 
original training set. The condition of the extraction is given by 
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where sde

 
is the standard deviation of )( 601  jej . The pairs of lx  and l  satisfying 

Eq. (15) are extracted and form a new training set with less number of pairs than that of 
the original training set, i.e., 60. When this new training set is applied instead of the 

original set, the error iE
~

 at the i-th learning procedure, i.e., iteration, is calculated by  
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where m is the number of the pairs extracted from the original set based on Eq. (15). In 

our proposed method,
 iE  and iE

~
 are alternately used for the evaluation of 

convergence at the i-th learning procedure. Figure 9 illustrates the concept of the 
proposed efficient learning process, in which the original training set and the extracted 
one are alternately applied for 200 times of iterative learning, respectively. The vertical 
axis means the number of the pairs in the training set. 
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Fig. 9 Image of the proposed learning process, in which original training set and 
extracted one are alternately applied to the NN for 200 times of iterative learning, 
respectively. 



Then, the proposed method was applied to the same problem explained in 
section 3.2 to evaluate the effectiveness. Figure 10 shows the learning result until iE  

reached to 0.02, in which sequential 100 times of iE  and 1,000 times of iE
~

 are used 
alternately and repeatedly. It is observed that totally 650,220 times of weights updating 
were conducted and the calculation time largely decreased to 4,096 seconds. 
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Fig. 10 Learning result using the proposed method, in which original training set and 
extracted one are alternately applied to the NN for 100 and 1000 times of iterative 
learning, respectively. 
 
 
5. KINEMTIC CONTROL OF THE LEG 
 
5.1 Jacobian of the Leg 
 

When the tip of the leg is controlled kinematically in Cartesian space, Jacobian 
matrix is needed. By differentiating Eqs. (9), (10) and (11) by time, the following relation 
is obtained. 
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Here, for example, a constraint condition is considered. The condition is that the 
orientation of the leg tip is fixed to the ground as given by 
 

)c(c const.432  
 
                                                        (31) 

so that  
0432   
 
                                                         (32) 

 
By including Eq. (32) into Eq. (19), 
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is obtained, in which Jacobian )(J

 
is defined as 

 























1110

0 343332

24232221

14131211

JJJ

JJJJ

JJJJ

)(J                                                (34) 

 
In order to conduct the kinematic control, desired relative position x  should be 

designed in Cartesian space and be transformed into relative angle   in joint space 
with )(1J . However, since the calculation of )(1J  is considerably complicated, an 
easy method to generate   with the NN shown in Fig. 3 is introduced. 

 
 

5.2 Kinematic Control without Inverse Jacobian )(1J  
 

It is assumed that )(k  and )(kx  are the position vectors in joint and Cartesian 
spaces, respectively, so that  

 
)}({)( kfkinek x                                                 (35) 

 
where k  denotes the discrete time. The desired movement )(kdx  in Cartesian space 
is written by 
 

)()()( 1 kkk ddd xxx                                              (36) 
 

To conduct the above motion, the following movement in joint space can be generated 
using the trained NN. 
 

)}1({)}({)( _nn_nn  kikinekikinek ddd xx          (37) 
 

where the function )}({)( _nnnn kikinek dx  means the mapping of inverse kinematics 
through the NN shown in Fig. 3. Through the proposed procedure, the desired 
movement )(kd  for kinematic control can be generated without using )(1J . 
 
 
6. CONCLUSIONS 
 
 In this paper, learning of inverse kinematics using neural networks with efficient 
weights tuning ability has been described for a serial link structure. Generally, in 
making neural networks learn a relation among multi inputs and outputs, a desired 
training set prepared in advance is used. The training set consists of multiple pairs of 
an input and an output vectors. Each input vector is introduced to the input layer for 
forward computation and the paired output vector is compared with the yielded vector 
from the output layer in terns. The time required for the learning process of the neural 
networks depends on the number of total weights in the neural networks and that of the 



input-output pairs in the training set.  
This paper has introduced neural networks with efficient weights tuning ability in 

order to effectively learn the inverse kinematics of a leg kit with multi-DOFs. In the 
proposed learning process, input-output pairs, which have the worse errors in learning 
process, are extracted from the original training set and form a new temporary training 
set. From the following iteration of learning, the temporary training set is applied instead 
of the original one. That means only pairs with worse errors are used for updating 
weights until the mean value of errors decrease to a desired level. Once the learning 
process is conducted using the temporary training set, the original training set is 
applied again instead of the temporary set. By repeatedly using these two training sets 
alternately, the convergence time could be efficiently reduced. The effectiveness was 
proved through simulation experiments using a kinematic model of a leg with four-
DOFs. 

Additionally, when the tip of the leg with a serial link structure is controlled 
kinematically in Cartesian space, an inverse Jacobian matrix is needed to generate 
velocities in joint space. However, the calculation of the inverse Jacobian is not easy. 
Hence, neural networks based inverse kinematics was introduced to overcome the 
complexity. 
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