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ABSTRACT 
 

The purpose of the paper is to review and analyze analytical, approximate and iterative 

solutions and characteristics of oblique shock wave equation in a supersonic 

freestream. The closed-form solutions of the cubic polynomial equation are having real 

and conjugate complex roots and associates with strong and weak shock wave. A 

computer program is written to compute the angle of the oblique shock wave. The exact 

solution of the oblique shock equation in terms of tanβ is found to be most convenient 

and efficient way to compute the oblique shock wave angle β for given upstream flow 

conditions. The numerical algorithm is based on the closed-form solution that can easily 

use for rapid calculations of the oblique shock wave angle. The subroutine will be 

useful for design of an air-breathing hypersonic vehicle. 

Introduction 

The oblique shock wave theory essentially requires for designing a wave rider 

configuration and an air-breathing hypersonic vehicle (Bolender and Doman, 2007). 

The oblique shock wave angle β is needed as an explicit function of the upstream Mach 

number M1 and the flow deflection angle θ as depicted in Figure 1. It is commonly 

known as θ-β-M relationship of the oblique shock wave theory associated with 

compressible gas-dynamics. Ames Research Staff (1953) has mentioned in their report 

that the analytical solution of the oblique shock equation cannot be arrived and 

tabulated values of θ-β-M.  

 

 

 

 

Figure 1     Flow through an oblique shock wave 



    Thompson (1950) has derived a cubic polynomial equation in term of sinβ of the 

oblique shock wave equation. Briggs (1963) and Mascitti (1969) have obtained 

analytical solution of the cubic equation. Naylor (1954) has presented a solution of the 

shock-wave cubic equation that allows computation of the oblique shock wave angle 

without tables. Hartley et al. (1991) have carried out real-time application of the exact 

and approximate solutions to the oblique shock wave equations. 

    The cubic polynomial equation of the oblique shock wave equation in terms of tanβ 

had been derived by Wellmann (1972) and the analytical solutions were published by 

Wolf (1993). An analytical solution was also obtained by Emanuel (2000) and 

compared with the tabulated value of β by Anderson (2004). Bar-Meir (2013) has 

discussed in detail the characteristics of the real and complex conjugate roots of the 

cubic polynomial equation of the oblique shock wave. 

   Duo et al. (1992), Powers (1992) and Agnone (1994) have discussed the 

approximate formula for weak and strong shock wave angles. Houghton and Brock 

(1988) and Houghton and Carpenter (2005) presented iteration method for the solution 

of cubic polynomial equation. Rudd and Lewis (1998) have compared the closed-form 

solutions with the iterative scheme (Houghton and Brock, 1988). They concluded that 

the computer algorithm of the iterative method is too complicated and consuming more 

computer time as compared to the analytical solution.  

    The above literature survey reveals that analytical, approximate and iterative 

methods are available to obtain the value of the oblique shock wave angle for the given 

upstream flow conditions. The present paper presents the closed-form solution for the 

shock wave angle based on the oblique shock wave theory. The roots are obtained 

using the Cardan cubic polynomial equation (Grewal, 1993). A computer program is 

developed based on the exact solution of the oblique shock theory which can easily 

use in the design phase of an air-breathing hypersonic vehicle.  

Analytical Solution  

The relationship between the oblique shock wave angle β, the flow deflection angle θ 

across the oblique shock wave and upstream Mach number M1 (Liepmann and Roshko, 

2007) is  
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 where γ is the ratio of specific heats and subscript 1 represents upstream supersonic 

Mach number. The above equation shows an implicit relation between θ-β-M. Eqn (1) 

becomes zero at β = π/2 and at β = α = sin-1(1/M1), where α denotes Mach wave angle. 



Within this range β is positive and must therefore have a maximum value of flow 

deflection angle θmax. There are two ways to express the polynomial equation of Eqn 

(1). Thompson (1950) has obtained following expression for Eqn (1) as 
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The Cardan equations give three roots for sin2β from the foregoing equation. The direct 

computation of oblique shock wave properties with freestream Mach number and flow 

deflection angle as the independent variables is used to determine the strong and the 

weak shock wave angle. One of the root of the cubic equation is real and the solutions 

of Eqn (2) may written as   
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where subscripts s and w represent the strong and the weak shock, respectively. If  = 

0 then w  0; and if  = , then w < 0. Normal shock wave occurs just at θ = 0 and β = 

π. If θ > θmax, then no solution exists for a straight oblique shock wave. If θ < θmax, then 

there are two values of β for a given value of M1. The large value gives a strong shock 



solution where downstream M2 is subsonic. The small value gives the weak shock 

solution where M2 is supersonic except for a small region near θmax. In nature, the weak 

shock solution is favored and that one usually occurs. 

    By writing the another general form of Eqn. (1) in a cubic relation for tanβ, Wellmann 

(1972) derived following equation 
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Let us introduce a new variable ytan   and Eqn (4) becomes  
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Let us introduce another variable say 3/bxy  in Eqn (5) and reduced to  

                                                                      03  wvxx                                             (6) 

The three roots of Eqn (6) are as following 
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If D > 0, then one real root of Eqn (5) is 
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and the other roots depend on the magnitude of D. They can be expressed as 
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A numerical algorithm is written based on the magnitude of D. The computer subroutine 

will compute the real root, the weak and the strong shock wave angle with the specific 

upstream Mach number and the flow deflection angle.  

Iterative Solution 

An iterative solution (Rajaraman 1996) for the cubic equation can also be used to 

calculate β. For any root (tanβ)k is written with respect to the coefficient of the 

polynomial of Eqn (5) as 

aby
k
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where subscript k is the root of Eqn (5). This gives an upper bound for all the roots of 

the polynomial equation. All the coefficients of the polynomial equation are real. Then 

all the roots of the equation are real or the pairs of roots are complex conjugates. The 

Newton-Raphson method is simple to calculate the real root of the cubic equation. The 

iteration yields the real root y1 = tanβ at k = 1. Eqn (5) reduced the following quadratic 

equation  
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Solution of Eqn (10) can be obtained using following formula   
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The real root can be obtained by solving Eqn (5). The iteration scheme can be initiated 

with an initial value using Eqn (9). Other roots can be calculated by solving Eqn (11). 



The iterative scheme requires more computer time to obtain the oblique shock wave 

angle for the specific flow conditions and deflection angle. 

Conclusion 

The paper compares the relative performance of analytical, approximate and iterative 

solutions of the oblique shock wave equation. The strong and weak shock wave angle 

can be calculated from the closed-form solution for given upstream flow conditions. The 

analytical solutions are useful and would lead to saving in computer time. The 

numerical algorithm is efficient, simple and straightforward to implement in designing 

air-breathing hypersonic vehicle.  
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Appendix A:  Computer program for oblique shock wave     

SUBROUTINE OBLIQUE (EM1, THETA, BETA, EM2, GAMA, IFL) 

C EM1 - FREESTREAM MACH NUMBER 

C THETA - FLOW DEFLECTION ANGLE (in DEGREES) 

C BETA - SHOCK ANGLE  

C GAMA - RATIO OF SPECIFIC HEATS 

C EM2 - MACH NUMBER AFTER SHOCK 

C IFL - PARAMETER = 0 FOR ATTACHED SHOCK IFL - PARAMETER = 1  

C FOR DETACHED SHOCK (FLOW PROBLEM HAS TO SOLVE SEPARATELY) 

C THETA = 90 deg FOR THE NORMAL SHOCK  

 RM(X) = SQRT((GM1*X*X+2.)/(2.*G*X*X-GM1)) 

 EM2=EM1 

 IF (EM1.LT.1.)  RETURN 

 IF (THETA.EQ.0.)RETURN 

 IFL=0 

 PI=3.14159265 

 THI=THETA*PI/180. 

 G=GAMA 

 GP1=G+1. 

 GM1=G-1. 



 IF (THETA.EQ.90.) GO TO 6 

 C=2./GM1*COS(TH1)/SIN(THA)/(EM1*EM1+2./GM1) 

 B=(GP1/GM1*EM1*EM1)+2./GM1)/(EM1*EM1+2./GM1) 

 A=C*(1.-EM1*EM1) 

 P=-A*A/3.+B 

 Q=2.*A*A*A/27.-A*B/3.+C 

 QQ=(P/3.)**3+(Q/2.)**2 

 IF (QQ.LT.0.) GO TO 1 

 QQ=SQRT(QQ) 

 A1=QQ-Q/2. 

 B1=-QQ-Q/2. 

 A1=A1/ABS(A1)*ABS(A1)**(1./3.) 

 B1=B1/ABS(B1)*ABS(B1)**(1./3.) 

 B1=A1+B1-A/3. 

 B1=ATAN(B1) 

 IF(B1.GT.0.) GO TO 5 

 WRITE (7,100)THETA 

100 FORMAT ('DEFLECTION',F10.6,' IS GREATER THAN MAX DEFLECTION) 

 IFL=1 

 RETURN 

1 B1=SQRT(-P/3.) 

 A1=-Q/2./B1**3 

 A1=ACOS(A1) 

 Z1=2.*B1*COS(A1/3.)-A/3. 

 Z2=-2.*B1*COS(A1/3.+P1/3.)-A/3. 

 Z3=-2.*B1*COS(A1/3.-PI/3.)-1/3. 

 IF(Z2.GT.Z1)GO TO 2 



 A1=Z1 

 Z1=Z2 

 Z2=A1 

2 IF(Z3.GT.Z1) GO TO 3 

 A1=Z1 

 Z1=Z3 

 Z3=A1 

3 IF(Z3.LT.0.)WRITE(7,100) 

 IF(Z3.LT.0)IFL=1 

 IF(Z3.LT.0.)RETURN 

 B1=ATAN(Z2) 

5 BETA=B1*180./PI 

 RM1=EM1*SIN(B1) 

 EM2=RM(RM1) 

 EM2=EM2/(SIN(B1-TH1) 

 GO TO 7 

6 BETA=90. 

 RM1=EM1 

 EM2=RM(RM1) 

7 RR1=RR(RM1) 

 RETURN 

 END 

 

 


