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ABSTRACT 
 
     The hypersonic flow near the stagnation streamline of a blunt body is analyzed 
with the quasi one-dimensional Navier-Stokes equations approximated by adopting the 
local similarity to the two-dimensional Navier-Stokes equations. The governing 
equations are solved with finite volume method. The computational domain is confined 
from the stagnation point to the shock wave, and shock fitting method is used to find 
the shock position. The shock wave angle in the vicinity of the stagnation streamline is 
used for the boundary conditions at the shock wave. Numerical computations are 
performed for the hypersonic flow in perfect gas about a cylinder. Along the stagnation 
streamline, the profiles of flow quantities computed by the quasi one-dimensional 
Navier-Stokes code are comparable with those by the two-dimensional Navier-Stokes 
code. For the shock standoff distance, the quasi one-dimensional code predicts shorter 
than the two-dimensional code. 
 
1. INTRODUCTION 
 

Flowfield analysis around the nose-tip and leading edge of the hypersonic vehicle 
has been much interested because the largest heat flux occurs at these regions. After 
the success of numerical analysis of hypersonic blunt body flows by Moretti (1966) 
computational algorithms have been progressed rapidly. However the fundamental 
frame of newly developed computational methods is not much different from that of 
Moretti. The computational domain should cover the subsonic region in the shock layer 
to make flow at the outflow boundary is supersonic (Fig. 1). Therefore we have to solve 
the two-dimensional domain though the heat flux at the stagnation point is needed only. 
On the other hand if it is possible to solve the flow equations at the stagnation 
streamline, the computational time could be reduced greatly. Many researchers have 
tried to solve the flow near the stagnation streamline of blunt bodies in hypersonic flow. 
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Fig. 1 Hypersonic flow abound blunt body 
 
 

 
 

Fig. 2 Coordinate system 
 

 
Kao (1964) considers the flow analysis near the stagnation streamline of a blunt 

body by applying the local similarity to the Navier-Stokes equations in the rarefied flow. 
He claims the assumption of local similarity is very accurate for predicting flow 
quantities near the stagnation streamline of a blunt body. Jain (1970) investigates the 
flow structure of the merged layer near the stagnation point of a blunt body for flights in 
the rarefied atmosphere by solving the Navier-Stokes equations adopting the concept 
of local similarity. Klomfass (1996,1997) conducts computations for the stagnation 
streamline of a sphere in hypersonic flows with dimensionally reduced Navier-Stokes 
equations approximated by the local similarity. Implicit finite volume method is applied 
to solve the equations, and results from the reduced equations are compared with 



 

 

those from the two-dimensional Navier-Stokes equations. In the result the shock 
standoff distance is always underestimated by the reduced Navier-Stokes equations. 
William (1997) conducts computations for the stagnation streamline of sphere with 
similar governing equations used by Klomfass (1997). He adopts shock capturing 
method applying upwind schemes for computational algorithm. As a result, the shock 
standoff distance predicted by the reduced governing equations shows similar behavior 
to Klomfass (1997). 

In this study, we suggest a computational procedure to solve the flow quantities 
along the stagnation streamline of a blunt body in hypersonic flow. The dimensionally 
reduced quasi one-dimensional Navier-Stokes equations are solved by applying implicit 
finite volume method. The computational domain is covered from the stagnation point 
to the shock wave, and shock fitting method is used to find the shock position. The 
shock wave angle in the vicinity of the stagnation streamline is determined by using the 
shock wave shape correlation by Billig (1967) in the limit of small distance along the 
body. And the shock boundary conditions are given with this shock wave angle. 
Numerical computations are performed for the hypersonic flow in perfect gas about a 
cylinder. Results such as shock standoff distance and stagnation point heat flux 
produced by the present procedures are compared with those by two-dimensional 
Navier-Stokes code and other sources. 
 
2. GOVERNING EQUATIONS 
 

The cylindrical coordinate is considered and the free-stream is in the direction of 

    as illustrated in Fig. 2. The two-dimensional Navier-Stokes equations are 
simplified by reducing the number of independent spatial variables from two to one by 
applying approximations used by Kao (1964) in which the flow variables are expanded 

about the axis of symmetry with respect to      and only first truncation is retained. 
For the pressure    is included in the first truncation. 
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The flow quantities are functions of the radial coordinate alone by letting     , then  
the equations for the stagnation streamline can be specified. Flow quantities are made 
dimensionless by dividing by the freestream conditions. 

The conservative form of quasi one-dimensional equations for the analysis of 
stagnation streamline of cylindrical body is given by Klomfass (1996) as 
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The difference between the present equations and equations by Klomfass is the 
expression of the pressure term. In this study we follow the form by Kao (1964) as 
above while Klomfass approximates the pressure like the surface pressure in 
Newtonian theory. The components of conserved variables vector and inviscid and 
viscous flux vectors are given as follows: 
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Pressure  ̅  is determined by equation of state, and  ̅  is calculated from the second 
set equation of radial momentum equation. 
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3. NUMERICAL PROCEDURES 
 

3.1 Computational Algorithms 

Eq. (2) is transformed into a generalized coordinate  , and the computational 
domain is discretized using a cell centered finite volume method with unit spacing 
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A tilde denotes numerically approximated flux at the cell interface. Eq. (6) provides a 
set of coupled ordinary differential equations with respect to time. Application of the 
implicit Euler backward scheme and the time linearization of the nonlinear terms result 
in 
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The residual vector is given as 
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For the calculation of inviscid flux,  ̃, low-diffusion flux-splitting scheme (Edwards 1997) 
is used. High order accuracy in space is achieved with the MUSCL approach; primitive 
variables are extrapolated to the cell interface with minmod limiter function. The viscous 
flux is discretized by central difference. For the calculation of Jacobian matrices, 

      in the implicit part (left-hand side), the firsr-order Steger-Warming’s flux vector 
splitting scheme is used for inviscid flux, and the treatment by Tysinger and Caughy 
(1991) is used for viscous flux. The residual vector at point ( ) in the implicit part is 



 

 

dependent on the states of two neighboring grid points. The resulting matrix equation at 
point ( ) can be written as 
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Coefficient matrices composed of inviscid and viscous flux Jacobians are given as 
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    can be obtained by solving a block tridiagonal matrix equation. Then the 
conserved variable vector at the (n+1)th time level is finally updated as 
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3.2 Shock Wave Angle 
The shock wave angle in the vicinity of stagnation streamline is obtained as 

follows. The correlation formula for a cylinder proposed by Billig (1967) is employed to 
depict the shock shape as follows:  
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where   ,    are coordinates at the shock position.   is the shock standoff distance 
along the stagnation line, and    is radius of curvature of the shock, 
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For a small value of   , the line along the radial direction with a slope of         is 
given as 
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Then we can obtain the coordinate of intersection point between Eq. (12) and Eq. (14). 
With geometrical relation the shock wave angle at the intersection point is 
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Where the derivative of shock standoff distance with respect to   is approximated as 
follows: 
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3.3 Shock Fitting Method 
The shock fitting method developed by Henrick (2006) is employed, which uses 

the momentum equation along the shock normal direction instead of a characteristic 
relation. Conservation of mass across the shock wave gives 
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The momentum normal to the shock wave is obtained by using the Rankine-Hugoniot 
relations as follows: 
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The shock acceleration is calculated as 
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The derivative of the momentum at the shock with respect to the shock velocity is 
obtained from Eq. (18) and the term  (    )    is computed from the momentum 
equation as 
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4. RESULTS AND DISCUSSION 
 

A hypersonic flow in calorically perfect gas over a two-dimensional cylinder is 
chosen to validate the applicability of quasi one-dimension Navier-Stokes equations. 

The specific flow conditions are:            ,        ,         ,       , 
       . Viscosity is calculated from Sutherland’s law. These conditions correspond 
to the experimental conditions by Tewfik (1960). The Prandtl number is chosen to be 
0.77 as Kopriva (1993). The number of grid points from the stagnation point to the 
shock is 100. Grid points are clustered to the wall to resolve large gradient. The 
freestream conditions are used as an initial data, and the fixed time step with the CFL 
number of 20 is used throughout the calculations. In Fig. 3 convergence histories of 
shock velocity and shock stand-off distance are shown. We can see the good 
convergence and robustness of computational procedure. Fig. 4 shows profiles of flow 
quantities along the stagnation streamline comparing results by the quasi one-
dimensional Navier-Stokes code with those by two-dimensional Navier-Stokes code 
(Lee 2002). The results by two codes show good agreements. For the shock standoff 
distance the quasi one-dimensional code predicts shorter than two-dimensional code. 



 

 

 
 

Fig. 3 Convergence histories of shock velocity and shock distance 
 

 

 
 

Fig. 4 Profiles of pressure, density, temperature, and Mach number along the 
stagnation streamline 
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Fig. 5 Comparison of heat flux at the stagnation point 
 
 
If the shock shape from spectral solution by Kopriva (1993) is determined as the 
reference, the quasi one-dimensional Navier-Stokes code predicts about 8% shorter. 
Fig. 5 shows the comparison of heat fluxes at the stagnation point with data from 
various sources. For the experimental data by Tewfik and Giedt (1960) as a reference 
value, our codes and Fay & Riddell predict slightly lower values. While result by Gnoffo 
(1980) shows slightly higher value.  
 
5. CONCLUSIONS 
 

Numerical computations are conducted for the hypersonic flow in perfect gas 
about a cylinder by using the quasi one-dimensional Navier-Stokes equations code. 
The proposed shock boundary condition improves the prediction for shock standoff 
distance and stagnation point heat flux in comparison with previously presented results. 
The shock standoff distance predicted by the quasi one-dimensional code is about 8% 
shorter than that predicted by spectral method. The present numerical procedure is 
very efficient in the aspect of computing time and can be extended to thermochemical 
nonequilibrium flow. 
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