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ABSTRACT 
 

     Effect of a two-dimensional smooth hump on linear instability of hypersonic 
boundary layer is studied by using parabolized stability equations (PSE). Linear 
evolution of mode S over a hump in Mach 4.5 and 5.92 flat plate boundary layers is 
analyzed. Mean flow for stability analysis is obtained by solving the parabolized Navier-
Stokes (PNS) equations. Hump with height smaller than local boundary layer thickness 
is used. As same with the previous observations, destabilization effect on flat plate 
boundary layer is confirmed for hump located at upstream of synchronization point. On 
the other hand, stabilization effect is observed for hump at downstream of 
synchronization point. Parametric studies are carried to examine the effect of hump 
height, location, etc. Stabilization influence of hump on convective instability of mode S 
is found to be a possible cause of previous experimental observations of delaying 
transition in hypersonic boundary layers 
 
1. INTRODUCTION 
 
     Roughness elements significantly affect boundary layer stability and transition 
and thus understanding and evaluation of the effect of roughness element on boundary 
layer instability is practically important. Many experimental studies observed the 
upstream shift of transition location due to roughness. Theoretical studies confirmed 
that two-dimensional smooth roughness destabilize convective instability. Recent 
numerical studies revealed that depending on the shape and size of the roughness, 
many instability mechanisms other than the normal mode instability can be involved in 
transition process. Most of previous studies have found that roughness element 
destabilize boundary layer leading to earlier transition. 

On the other hand, for hypersonic flows, several experimental studies observed 
that roughness element can delay transition under certain circumstances. Holloway and 
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Sterrett (1964) carried out experiments on flat plate boundary layer of Mach number of 
4.0 and 6.0 with roughness. They observed delay of transition by the roughness with 
height smaller than local boundary layer thickness at a specific configuration. Fujii 
(2006) performed experiments on sharp cone boundary layer of Mach number of 7.1 
with two-dimensional roughness. They also observed delaying of transition at certain 
conditions. These observations imply that roughness has a possibility to stabilize 
hypersonic boundary layer. The cause and underlying mechanism of this transition 
delay, however, were not disclosed in their studies. 

Most dominant instability wave which leads hypersonic boundary layer transition 
is known to be Mack‟s 2nd mode. This mode is recently termed as mode „S‟ by Fedorov 
and Tumin (2011). It is natural that influence of roughness on the convective instability 
of mode S need to be examined first to investigate the cause of delaying transition. 
Duan et al. (2009, 2010) and Fong et al. (2011) investigated roughness effect on 
instability of mode S by using direct numerical simulations (DNS). Their DNS studies 
showed that the roughness located at the downstream of synchronization point can 
stabilize mode S. Although they imposed mode S at the inflow boundary and focused 
on its downstream evolution, it is possible in DNS study that the other mechanisms 
other than the convective instability of mode S can be involved due to roughness. In 
this respect, study on the effect of roughness on convective instability can be important 
to make it clear that the transition delay is indeed associated with the stabilization of 
mode S. 

In this study, theoretical study on the effect of a two-dimensional roughness on 
convective instability of mode S in hypersonic boundary layers is carried out by using 
parabolized stability equations (PSE). Flat plate boundary layer at two different Mach 
numbers. Smooth hump with height smaller than local boundary layer thickness is used 
as roughness geometry. Mean flow for stability analysis is obtained by solving the 
parabolized Navier-Stokes (PNS) equations. Spatial linear stability analysis is carried 
out to identify synchronization point. Linear evolution of mode S is studied for hump 
located at both upstream and downstream of the synchronization point. Parametric 
studies are performed to evaluate the effect of hump location and height. Overall 
influence of hump is examined by using N-factor curves for various frequencies. 
 
2. METHOD OF ANALYSIS 
 
      2.1 Hump Geometry 

Figure 1 shows schematically the two-dimensional smooth hump used in the 
present study. L, b and h represent respectively the distance from the leading edge of 
flat plate to the location of the hump center, half width, and height of the hump. The 
Reynolds number ReL is defined as U∞L/ν where U∞ is the free-stream velocity. The 
geometry of the hump is given by Eq. (1), which is the same with that used in previous 
studies (Nayfeh 1988 and Masad 1994) 

 

           y h f t                                   (1) 

where                   /t x L b  ;  

 

 
321 3 2 , 1

0 , 1

t t if t
f t

if t

   
 





  

 

Fig. 1 Schematic of hump geometry 
 
2.2 Parabolized Navier-Stokes Equations 

The mean flow data of supersonic/hypersonic boundary layer over a hump are 
obtained by solving parabolized Navier-Stokes (PNS) equations. Formulation and 
solution techniques of PNS can be found in many references (Tannehill et al. 1999, 
2000). The accuracy of PNS solution as basic flow for linear stability analysis of 
axisymmetric flows was verified by Esfahanian and Hejranfar (2007). In this study, the 
time iterative PNS (TIPNS) scheme of Tannehill et al. (1999, 2000) is employed. A 
computer code for PNS solution for both 2-D and axisymmetric flows with iterative 
procedure was made and was validated through several typical axisymmetric flow 
cases. This code was used to get mean flow data for the present stability analysis. 
 
2.3 Parabolized Stability Equations 

As is well known, PSE can take into account the flow non-parallelism and 
curvature effect on the stability analysis. The PSE approach is computationally more 
efficient than LST since it performs the stability analysis by downstream marching from 
the initial condition without solving eigenvalue problem at each streamwise station. 
Further, it also enables us to carry out non-linear stability study. The PSE has widely 
been used to study linear and non-linear stability of subsonic and supersonic boundary 
layers over simple geometries. The PSE formulation and solution technique can be 
found in many references (Herbert 1997, Chang et al. 1993, Chang 2004). The PSE 
method of the present study is the same with that of our previous work for 
incompressible and supersonic boundary layers (Park and Park 2013). Descriptions of 
the PSE formulation of the present study here can be found in them. 
 
3. SPATIAL LINEAR STABILITY ANALYSIS AND SYNCHRONIZATION POINT 
 
      3.1 Spatial Linear Stability Analysis 

To examine the effect of hump location with respect to synchronization point, the 
synchronization point of flat plate without hump is identified first by using spatial linear 
stability analysis. Flat plate boundary layer of Mach 4.5 with free-stream temperature of 
61.11 K is considered following the case of Fedorov and Tumin (2011). Free-stream 
unit Reynolds number is set to 107

 /m based on ideal gas relation (p∞=1008.64 Pa). 
Similarity solution of compressible boundary layer with adiabatic wall condition is used 



  

as mean flow and parallel flow approximation is employed. The similarity solution was 
obtained from the boundary layer code which is 4th order accurate in surface normal 
direction as described in Iyer (1990). Spatial linear stability analysis is carried out for 
F=50 at various streamwise locations. The non-dimensional frequency F is defined 
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Since the spatial stability is concerned, the nonlinear term of α appear in the 

eigenvalue problem. Non-linear terms are preserved and non-linear eigenvalue 
problem is reduced to linear eigenvalue problem as given in Malik (1990). Discretization 
with fourth order finite difference approximation yields matrix eigenvalue problem for α. 

The boundary layer length scale δ and Reynolds number based on this length scale 

(denoted as R) is widely used in the stability study to represent streamwise location. 
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Figure 2 shows the eigenvalue spectra for F=50 at R=2000 (x=0.4 m). Abscissa 

and ordinate represent real and imaginary part of the eigenvalue, respectively. 
Vertically aligned eigenvalues in the figure correspond to entropy and vorticity mode 
spectrum. Horizontally distributed eigenvalues are spectra of fast (left hand side) and 
slow (right hand side) acoustic mode. Two discrete modes, mode S and mode F are 
originated from the slow and fast acoustic spectrum. It is well-known that mode S and 
mode F are named after the observation that they synchronizes with slow and fast 
acoustic wave near the leading edge. As highlighted in the figure, mode S and mode F 
are located at around the end of the slow and fast acoustic spectrum, respectively. 

 

Fig. 2 Eigenvalue spectra from spatial stability analysis 



  

3.2 Synchronization Point 
Figure 3a shows the real part of phase speed of mode F and mode S with respect 

to R. The phase speed is obtained by c=ω/α. Present results are plotted with symbols 
and those of Fedorov and Tumin (2011) are plotted in dashed line in the figure. Figure  
3a clearly shows that both results are in good agreement with each other. As described 
in Fedorov and Tumin in detail, mode F and mode S synchronize with fast and slow 
acoustic wave near the leading edge (low R), respectively. The phase speed of fast and 
slow acoustic wave are 1+M∞

-1=1.222 and 1-M∞
-1=0.778 which are indicated as 

horizontal solid lines in the figure. As R increases, phase speed of mode F decreases 
and synchronizes with that of vorticity and entropy mode (cr=1) at around R≈3316. 
There is jump of phase speed of mode F when it crosses the vorticity and entropy 
spectrum as theoretically shown by Fedorov and Khokhlov (2001). Further downstream, 
phase speed of mode F decreases and synchronizes with mode S at around R≈3808. 
As seen in the figure, the phase speed of mode S increases continuously until it 
synchronizes with mode F. The location at which phase speeds of mode S and mode F 
synchronize is called as synchronization point. For the case given in the figure, the 
synchronization point (Rs=3808) corresponds to streamwise location of x≈1.45 m. 
Beyond the synchronization point, phase speed of mode F decreases continuously 
even lower than that of mode S. Imaginary part of phase speed plotted in Fig. 3b also 
shows good agreement with those given by Fedorov and Tumin (2011). 
 

 

Fig. 3 Plot of (a) real and (b) imaginary part of phase speed of mode F and mode S 
 

Based on the definitions of frequency F and Reynolds number R, non-
dimensional angular frequency ω (=2πfδ/U∞) obeys the following relation. 
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According to Eq. (4), the angular frequency for the synchronization point of F=50 

is found to be ωs≈0.1904 (Rs≈3080, see Fig. 3a). The phase speed curves with respect 



  

to R of Fig. 4 vary with the frequency F. However, when phase speed is plotted with 
respect to the angular frequency ω, all the curves are collapsed almost into a single 
curve as shown in Fig. 4. The same observation was made by Fong et al. (2011). Since 
angular frequency for synchronization point would also be invariant (ωs=0.1904), the 
synchronization point Rs for different frequency F can be simply predicted by 
Rs=ωs/F×106. For example, synchronization points for F=40 and 60 will be 
approximately Rs≈4760 and 3173, respectively. We also carried out stability analyses 
for M∞=5.92 flat plate boundary layer. Freestream conditions are set as T∞=46.69K and 
p∞=742.76Pa following Maslov‟s experiment (Maslov 2001). Fong et al. (2011) also 
used the same conditions in their DNS study. Results showed good agreement and the 
angular frequency for synchronization is found to be ωs≈0.111 

 

Fig. 4 Plot of real part of phase speed with respect to angular frequency for F=40, 50, 
and 60 

 
4. MEAN FLOW CALCULATION 
 

The mean flow data for boundary layer over a hump is obtained from the solution 
of PNS equations. Free-stream conditions are the same with those used in the 
preceding section (M∞=4.5, T∞=61.11K, Re=107 /m). Adiabatic wall boundary condition 
is imposed. We note that general coordinate system is employed for both PNS 
calculation and PSE analysis of the present study. The x2 coordinate is in the same 
direction with that of y coordinate of Cartesian system. The hump center locations are 
L=1.0 m and 1.6 m which correspond to the cases of upstream and downstream of the 
synchronization point of F=50, respectively. We comment here that the synchronization 
point for F=50 was found to be x=1.45 m. The hump width and height are fixed at b=0.1 
m and h=0.002 m for both cases. The hump height is approximately 46.3% and 36.6% 
of local boundary layer thickness (δ99) at L=1.0 and 1.6 m, respectively. The 
streamwise extent of the computational domain is specified such that the inflow and 
outflow boundaries are at x=0.4 m and x=3.4 m, respectively. The height of the 



  

computational domain is set to be 800 times the boundary layer length scale at the 
inflow boundary, i.e. 800δ at x=0.4 m (=0.16 m). Similarity solution of flat plate boundary 
layer at the inflow boundary (x=0.4 m) is used as inflow condition. 1501 grid points with 
uniform spacing (∆x=0.002 m) which ensures 100 grid points over the hump is used in 
streamwise direction and 501 grid points are distributed in the y-direction with clustering 
near the surface. 

Figure 5 shows skin friction coefficient curves for the above two cases together 
with that for flat plate case. The vertical dashed line in the figure indicates the 
streamwise location of synchronization point. We see that the skin friction around the 
hump is very much deviated from that over a flat plate as expected. The skin friction 
decreases and rises sharply over a fore part of the hump region. It then decreases 
around the hump center and increases again to asymptotically reach the value of the 
flat plate boundary layer. Contrast to subsonic cases, the lowest value of the skin 
friction appears at an upstream location of the hump center as discussed in our 
previous study for supersonic boundary layer (Park and Park 2013). This implies that 
separation would first occur at a location upstream of hump center if the height 
increases. The reason for this can be easily explained. The flow becomes compressed 
as the hump center is approached while the flow expands beyond the hump center. 
This expansion accelerates the flow in the downstream of the hump resulting in the 
increase of skin friction coefficient. We comment here that the peak deviation of skin 
friction from that of the flat plate in the downstream region of the hump was smaller in 
this case than in subsonic flow cases. 

 

Fig. 5 Skin friction coefficient curves of boundary layer over a hump 
 
5. LINEAR PSE ANALYSIS OF MODE S 
 
5.1 Linear Instability of Mode S 

We first perform linear PSE analyses for the evolution of mode S in M∞=4.5 flat 
plate boundary layer over a hump. PNS solution is used as mean flow data. For the 



  

region upstream of PNS computational domain, similarity solution of boundary layer 
equation is taken as mean flow data.  

For the stability calculation, the grid distribution in x2-direction is chosen differently 
from that for the mean flow calculation. The mean flow data at stability grid points were 
obtained by interpolation of those from the PNS calculation. Test calculations were 
carried out with various grid distributions for stability analysis with the same mean flow 
data to verify that the interpolation of the mean flow data does not affect the stability 
results. We chose 201 grid points within 200δ in x2-direction with clustering near the 
solid boundary for stability analysis. Figure 6 contains growth rate curves of F=50 for 
the cases of hump of Fig. 5. Throughout the present study, growth rates (σ) are based 
on integrated disturbance kinetic energy whose definition can be found in Park and 
Park (2013). The hump center locations L=1.0 m and 1.6 m correspond to R=3162.3 
and 4000, respectively. PSE calculation is initiated at R=774.6 and the curve for the flat 
plate case is plotted together in both figures. 

 

Fig. 6 Growth rate curves of mode S at F=50 for hump centered at  

a) L=1.0 m and b) L=1.6 m 
 
We note here that the mean flow variation in streamwise direction must be small 

to ensure the reliability of PSE results. Large change of mean flow within one wave 
length of the instability wave may deteriorate the validity of basic approximation of PSE 
formulation. To alleviate this issue, we are considering a smooth hump with very low 
height to width ratio (e.g. h/b=0.02) which yields very mild change of mean flow around 
the hump. This configuration is chosen to justify the use of PSE approach for stability 
analysis. Moreover, this configuration is also expected to cause only convective 
instability which is the focus of the present study. We comment here that based on 
calculated α, the wave length (λx) of mode S at F=50 is estimated to be around 0.011 m 
which is approximately 5.5 % of the hump width. This implies that variation of mean 
flow over one wave length around the hump is not likely to be significant.  



  

We see from Fig. 6 that the growth rate over a hump deviates very much, as 
expected, from that of the flat plate case. The instability wave undergoes sequences of 
abrupt destabilization and stabilization as it passes the hump. Consequently, the 
growth rate becomes higher and lower alternatively compared to the flat plate case. 

The hump location of L=1.6 m is seen to be in the middle of unstable region of 
large growth rate for flat plate case. For this hump case (Fig. 6b), we see that the 
growth rate is seen to be smaller than that of the flat plate case over most of the hump 
region. From this, we can easily expect that the overall effect of the hump would be 
stabilization of the mode S. To quantitatively evaluate the overall influence of the hump, 
N-factor which represents logarithmic measure of amplification was computed by 
integrating the growth rate along streamwise coordinate. 
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N-factor curves for both cases of Fig. 6 are plotted in Fig. 7 together with that for 

the flat plate case. For the case of L=1.0 m, we see that N-factor becomes higher than 
that of flat plate case beyond the hump. This destabilization effect of hump agrees well 
with the findings from previous studies for first mode instability waves in subsonic and 
low supersonic Mach number cases (Park and Park 2013). In contrast to this, we note 
that for the case of L=1.6 m, N-factor becomes much smaller compared to that of the 
flat plate case. This implies that certain combination of frequency and hump location 
can stabilize convective instability of the mode S in hypersonic boundary layer. We 
recall that x=1.0 m and x=1.6 m are upstream and downstream locations of the 
synchronization point for F=50. As already discussed in Fong et al. (2011), present 
results also indicate that the hump located downstream of synchronization point can 
stabilize the mode S although the roughness of the present study is a smooth hump 
with very small height to width ratio. This would be a possible explanation for the 
observation that roughness can delay hypersonic boundary layer transition under 
certain conditions. More detailed investigations will be given in the following sections. 

 

Fig. 7 N-factor curves of mode S at F=50 



  

5.2 Effect of Hump Height and Location 
To examine the effect of hump location, analyses for humps at several 

streamwise locations are carried out. Figure 8 shows N-factor curves of F=50 with fixed 
hump geometry (b=0.1 m and h/b=0.02). Figure 8a corresponds to several hump center 
locations at upstream of the synchronization point (xs≈1.45 m, Rs≈3808). Vertical 
dashed lines in the figure denotes the hump center locations. We see from Fig. 8a that 
humps at far upstream from the synchronization point give a smaller influence (L=0.8 m 
and L=0.9 m) on the growth rate. Compared to the flat plate case, the hump at L=0.8 m 
results in slightly smaller N-factor and the hump at L=0.9 m shows almost the same 
amplification with the flat plate case. Ahead of the synchronization point, the hump 
brings in greater overall destabilization effect as the hump location moves downstream 
(L=1.0 m and L=1.2 m). Destabilization becomes greater as the hump gets closer to the 
synchronization point. On the contrary, we see in Fig. 8b that effect of hump is toward 
stabilization when the hump center locations are at downstream of the synchronization 
point. We also see that there is a location where hump the yields the greatest 
stabilization. For the cases shown in Fig. 8, the hump at L=1.6 m exhibits the greatest 
stabilization and the stabilization effect becomes weaker as the hump moves further 
downstream. 

 

Fig. 8 N-factor curves of mode S for humps at various streamwise locations 
(b=0.1 m, h/b=0.02 and F=50) 

 
5.3 Overall Influence of Hump on N-Factor Envelope 

In the previous subsection, influence of hump height and location on the instability 
of mode S are examined for a single fixed frequency of F=50. To evaluate an overall 
influence of specific hump, the instability for a wide range of frequency needs to be 
examined. We carried out linear PSE analyses for various frequencies and resulting N-
factor curves are plotted in Fig. 9. The frequency ranges from F=80 to F=40 with an 
interval of 2. Figure 9a shows the results for the case of flat plate boundary layer 
without hump. Results for hump at L=1.2, 1.6, and 2.0 m are plotted in Figs. 9b-9d. 
Hump half width and height are fixed at b=0.1 m and h/b=0.02. From the comparison of 



  

Fig. 9a through 9d, we easily see that humps at different locations yield different overall 
influence. 

 

 

Fig. 9 N-factor curves of mode S for F=40~80 
a) flat plate b) hump at L=1.2 m c) L=1.6 m and d) L=2.0 m 

 
When N-factor curves for various frequencies are plotted together (see Fig. 9), N-

factor envelop curve can be determined. For example, the straight line drawn in Fig. 9a 
is an estimation for N-factor envelope curve. Then, we can identify the streamwise 
position at which N-factor first exceeds certain specified value. If we are interested in 
the location corresponding to N=10, the location is seem to be at RN=10≈4624 (Fig. 15a) 
which amounts to xN=10≈ 2.14 m. In the same manner, N=10 locations for the cases of 
L=1.2, 1.6, and 2.0 m are found to be approximately xN=10≈1.67, 2.08, and 2.50 m, 
respectively. In terms of xN=10, the hump at L=1.2 m has overall destabilization influence 
and the hump at L=1.6 m has almost same influence. On the other hand, the hump at 
L=2.0 seems to yield overall stabilization influence on the boundary layer. 



  

We carried out calculations for more cases and determined the streamwise 
locations where N-factor first exceeds 10 (xN=10). Figure 10 shows the locations of N=10 
for several hump locations and two different heights (b=0.1 m). The symbols of the 
figure indicate actual computation points. The horizontal solid line in the figure 
represents xN=10 for the case of flat plate. We see that xN=10 shifts upstream for the 
humps located upstream than a specific location. For example, for the humps with 
h/b=0.02, xN=10 shifts upstream for the cases where the hump center is ahead of L=1.6 
m. The upstream shift of xN=10 location implies that hump yields overall destabilization 
effect. As the hump moves downstream, the amount of upstream shift (destabilization 
effect) decreases. The upstream shift changes to downstream shift (stabilization effect) 
when the hump location moves downstream beyond a certain position. For example, it 
is seen that the change occurs between L=1.6 and L=1.7 m for the hump with h/b=0.02. 
Beyond this point, downstream shift becomes greater with more downstream position of 
the hump. However, at further downstream location, we see that xN=10 returns back to 
that of flat plate case. We see from the figure that the hump located beyond L=2.4 m 
does not affect the location of xN=10. This is due to the fact that the mean flow data is 
the same with those of flat plate up to N=10 location for the case of far downstream 
hump. It can be inferred from Fig. 10 that the two-dimensional smooth hump within a 
certain range of streamwise location can yield overall stabilization effect on the linear 
evolution of mode S. 

 

Fig. 10 The locations at which N-factor first exceeds 10 
 
5.4 Mach 5.92 Boundary Layer 

We performed additional calculations for M∞=5.92 boundary layer to verify that 
stabilization effect is also observed at this Mach number. The mean flow data are 
obtained from PNS solution in the same manner as in the previous analyses. As 
mentioned already, free-stream conditions are set as T∞=48.69 K and p∞=742.76 Pa 
which yields the unit Reynolds number of 1.416×107. Fong et al. (2011) studied the 



  

boundary layer at the same free-stream condition by using DNS. They calculated for 
mode S at f=100 kHz over an elliptic roughness at several locations and heights. Their 
results showed that the mode S was destabilized by the roughness at x=0.185 m with 
height greater than 50% of local boundary layer thickness. On the other hand, the 
mode S was stabilized by the roughness at x=0.410 m with height up to 62.5% of local 
boundary layer thickness (see Figs. 16b and 16d in Fong et al. 2011). 

Based on the free-stream condition, the non-dimensional frequency of f=100 kHz 
is F≈53.6 and we carried out PSE analysis for the same frequency. Figure 11a shows 
N-factor curve with respect to x for a hump at L=0.2 m with b=0.05 m and h/b=0.03. 
The hump height is approximately 62.7 % of the local boundary layer thickness. Initial 
condition for PSE analysis is imposed at x=0.04 m. Figure 11b shows the results for the 
hump at L=0.45 and 0.5 m with b=0.1 m and h/b=0.02. The hump heights are 
approximately 55.7 and 52.9 % of the local boundary layer thickness at x=0.45 and 0.5 
m, respectively. PSE calculation is initiated at x=0.1 m. We clearly see from Fig. 11 that 
the mode S is destabilized by the hump at L=0.2 m and stabilized by hump at L=0.45 
and 0.5 m. This observation qualitatively agrees well with the DNS results of Fong et al. 
(2011). It has to be noted, however, that the geometry of the roughness is different 
each other. Despite the difference of the roughness geometry, the basic stabilization 
mechanism due to roughness element seems to agree each other in both studies. 

 

Fig. 11 N-factor curve of mode S at f=100kHz for a) L=0.2 m and b) L=0.45 and 0.5 m 
 

As already determined by LST analysis (Sec. 3), the angular frequency of the 
synchronization point was ωs≈0.111. From Eq. (4), the synchronization point for F≈53.6 
is estimated as Rs≈2070.9 (xs=0.294 m). This location is in the downstream of L=0.2 m 
and the upstream of L=0.45 and 0.5 m. Clearly, stabilization effect occurs for the hump 
located at downstream of this synchronization point. This is consistent with the 
observations made in the preceding Mach 4.5 boundary layer case. 

To ensure this point, we carried out additional calculations for different 
frequencies. Figure 12a shows the N-factor curve of F=40 for the hump at L=0.4 and 
0.6 m (R≈2380 and 2914.8) together with that of flat plate case. Initial condition for PSE 



  

analysis is imposed at R≈752.6. The synchronization point for F=40 is Rs≈2775 and is 
noted with arrow in the figure. As shown in Fig. 12a, the synchronization point is 
between the two hump centers which are marked with vertical dashed lines.  Figure 
12b shows similar calculations for F=30 with humps at L=0.8 m (R≈3365.7) and 1.2 m 
(R≈4122.1). The synchronization point for F=30 is Rs≈3700. We also see from Fig. 12b 
that the mode S is stabilized by the hump located at the downstream of the 
synchronization point. From the results shown, the stabilization influence of hump 
whose location is at downstream of the synchronization point can be regarded as a 
general feature of hypersonic boundary layer. 

 

Fig. 12 N-factor curve of a) F=40 and b) F=30 for M∞=5.92 boundary layer 
 

 
6. CONCLUSIONS 
 

In the present study, the influence of hump on the instability of mode S in 
hypersonic boundary layer was investigated by using PSE analyses. The flat plate 
boundary layer of M∞=4.5 and 5.92 were considered. A two-dimensional smooth hump 
was chosen as roughness geometry. Humps with height smaller than local boundary 
layer thickness and very small height to width ratio less than 0.03 was considered to 
ensure very mild change of mean flow around the hump.  

The spatial linear stability analysis was carried out for flat plate to identify the 
synchronization point. The linear PSE analyses were carried out for linear evolution of 
mode S in M∞=4.5 boundary layer with hump located at upstream and downstream of 
the synchronization point. The mean flow for PSE analysis was obtained from PNS 
solution. The results showed that the mode S is destabilized by the hump when it is 
located at upstream of the synchronization point. The destabilization effect due to hump 
is consistent with the observations for subsonic and supersonic boundary layers of 
previous studies. On the other hand, the stabilization influence was identified for the 
hump when it is located at downstream of the synchronization point. It is consistent with 
the DNS results of recent studies with different roughness geometry. Parametric 



  

studies were carried out to examine the effect of hump location and height. The results 
for several hump locations confirmed that the hump located at a downstream position of 
synchronization point stabilizes mode S. Results for different hump heights revealed 
that both destabilization and stabilization effect was enhanced as the hump height 
increases. Analyses for various frequencies were carried out to examine the overall 
effect of hump. For the hump at several streamwise locations, the location at which N-
factor first exceeds value of 10 was identified from all N-factor curves envelope. The 
results showed that the hump within specific region pushes N=10 location downstream 
compared to the case of flat plate. The analyses for M∞=5.92 were also carried out and 
the same stabilization influence of hump was identified. 
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