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ABSTRACT 
 
     The paper presents results of computational modeling of multi-layer nanostructures 
that have curved shape due to lattice mismatch between material layers. Investigation 
of influence of nanostructure thickness and material anisotropy on self-positioning of bi-
layer nanostructures is performed with the atomic-scale finite element method (AFEM). 
The AFEM computer program is applied to modeling of GaAs and InAs self-positioning 
nanohinges with estimation of hinge curvature radius depending on structure thickness 
and orientation of atomic planes. It has been found that the curvature radius follows 
continuum mechanics solution for thickness larger than 50 nm. For smaller thicknesses, 
atomic-scale effects are significant. The numerical solutions for different orientations of 
atomic planes revealed considerable influence of material orientation on the hinge 
curvature radius. 
 
 
1. INTRODUCTION 
 
     Nanotechnology requires fabrication of objects having nanometer sizes. Such 
fabrication is a complicated task since in many cases direct machining of nano-
structures is impossible. A technique for creation of multi-layer nanostructures has 
been proposed by Prinz (2000). Schematic of nanostructure formation is shown in Fig.1. 
Material nanolayers with different lattice periods 1a  and 2a are put on a substrate using 
molecular epitaxial deposition. After selective etching of the sacrificial layer, the two top 
layers are wrapped up forming a free-standing three-dimensional nanostructure. 
Circular-arc shape of the nanostructure is caused by relaxation of initial stresses 
induced by lattice mismatch. Such self-positioning technique is employed for creation of 
mirrors, containers and other nanoscale structures (Vaccaro 2001, Arora 2006, Zhou 
2011).  
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Fig. 1 Self-positioning due to lattice mismatch 
 

 
     In this paper, we use the atomic-scale finite element method (AFEM) for modeling of 
GaAs and InAs bi-layer self-positioning nanostructures. Estimation of nanohinge 
curvature radius dependence on structure thickness and orientation of atomic planes is 
performed and compared to results obtained by continuum mechanics approaches.  
 
2. ATOMIC-SCALE FINITE ELEMENT METHOD 
 
     Traditional finite element method (FEM) is a universal numerical method for stress 
analysis of solids using continuum mechanics approach. Such approach produces 
significant results when atomic-scale effects are negligible.  
     To take into account such effects we use the atomic-scale finite element method 
(AFEM) that was introduced by Liu (2004) for multi-scale analysis of carbon nanotubes. 
The AFEM directly models an ensemble of atoms which interact with each other 
through empirical interatomic potentials. The AFEM equation system is derived from 
the total energy minimization, and in this regard it is similar to the traditional FEM. Total 
energy E  consists of an energy of interatomic bonds V  and a work of external forces 
F  on displacements 0 u x x   
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Using the Taylor expansion up to the second order terms 
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with its subsequent minimization 
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it is possible to obtain the AFEM equation system in a form similar to traditional FEM 
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Here K  is a global stiffness matrix 
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and ψ  is the imbalance vector between the internal and external atomic loads 
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Energy of interatomic bonds V  is estimated as sum energies of atom pairs i j   
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where ijr   is the distance between atoms i j . We use empirical interatomic potential 
function proposed by Tersoff (1986) with modification of Nordlund (2000) for particular 
mathematical expressions of ijV . 
     Our problems for self-positioning of nanostructures are characterized by absence of 
external forces F  and by geometric nonlinearity due to large displacements. 
Geometrically nonlinear problems are modeled by step procedure with Newton-
Raphson iterative search of equilibrium at each step (Nishidate 2008). Since three-
dimensional nanostructures contain large number of atoms, the AFEM system (4) can 
contain millions of equation. This equation system is sparse because of locality of 
interatomic potentials (7). The preconditioned conjugate gradient (PCG) method is 
employed in our equation solver. The PCG is among the fastest iterative algorithms for 
solution of large sparse equation systems.  
 
3. SOLUTION RESULTS 
 
     Two types of problems have been solved using atomic-scale approach of AFEM 
(Nishidate 2008) and continuum mechanics approach of FEM (Nikishkov 2006). In the 
first problem, influence of thickness on the curvature radius of self-positioning hinge 
two-layer nanostructure is investigated. Second problem is related to effect of 
anisotropy on curvature radius of same structure. 
     A bi-layer self-positioning nanostructure shown in Fig. 1 consists of 3c unit crystal 
layers of GaAs (top) and c unit crystal layers of InAs (bottom) with c being a problem 
size parameter in the thickness direction. The hinge length is set to 16a0c where a0 is 
an initial lattice period. 
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 Fig. 2 Atomic configuration and bonds in zincblende unit crystal 
 

 
     Both GaAs and InAs have the zincblende crystalline structure shown in Fig. 2. 
Arsenide atoms are located at crystal corners and face centers of the unit crystal, and 
Gallium/Indium atoms are inside with positions (0.25, 0.25, 0.25), (0.75, 0.25, 0.75), 
(0.25, 0.75, 0.75) and (0.75, 0.75, 0.25) in the unit crystal. Crystals of InAs have the 
lattice period a1 = 0.60584 nm and the lattice period of GaAs is a2 = 0.56536 nm. Initial 
lattice period for both crystals is selected as  0 1 23 / 4 0.57546nma a a   . 
     The initial atomic structure is generated with the above initial lattice period. Then 
step-wise relaxation procedure with Newton-Raphson equilibrium iterations leads to the 
final self-positioning configuration. 
 
3.1 Curvature radius as a function of nanostructure thickness 
     The GaAs and InAs bi-layer hinge structures with the problem size parameter c from 
1 to 36 are considered that corresponds to thickness t from 2.56 nm to 82.9 nm with 
number of atoms from 1106 to 1329986. The largest atomic system requires multiple 
solutions of about 4 millions of equations. 
     Shape of GaAs and InAs bi-layer hinge structure for problem size c=1 after self-
positioning is shown in Fig. 3. Dependence of the nanostructure curvature radius R 
determined by the AFEM (Nishidate 2007) and by the continuum mechanics approach 
(FEM) on the structure thickness t is presented in Fig. 4. Some decrease of curvature 
radius in continuum mechanics approach is related to artificial adjustment of thickness 
imitating thickness estimation in atomic structures. For larger thickness the atomic-
scale and continuum mechanics solutions are practically identical. For small thickness 
less than 30-40 unit crystal layers their discrepancy is considerable. 
 
3.2 Effect of material anisotropy 
     Atomic crystal structures possess anisotropic properties. Their mechanical 
parameters are different in different directions. In atomic-scale modeling, anisotropy is 
created by changing unit crystal orientation with respect to the hinge line. Continuum 
mechanics approach uses elasticity matrix for cubic crystal anisotropy with specification 
of material direction relative to the hinge. 
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Fig. 3 Shape of GaAs–InAs bi-layer hinge structure (c=1) after self-positioning 

 

Fig. 4 Dependence of the curvature radius determined by the AFEM and the continuum 
mechanics solution on the nanostructure thickness 
 

 

     The effect of material anisotropy is investigated for GaAs-InAs bi-layer hinge 
structure with crystal orientation angles θ = 0, 15, 30, 45, 60, 75, and 90 degrees.  
Curvature radius values determined for different crystal orientation angles θ by AFEM 
(Nishidate 2008) and continuum mechanics solution (Nishidate 2009) are presented in 
Fig. 5.  Results of both approaches are in reasonable agreement. 
 
4. CONCLUSIONS 
 
     The atomic-scale finite element method (AFEM) is used for modeling self-positioning 
of hinge nanostructures composed of GaAs and InAs layers. Investigation of curvature 
radius dependence on the nanostructure thickness showed that for larger thickness 
atomic-scale and continuum mechanics approaches provide close results. For 
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thickness less than 30-40 unit crystal layers the continuum mechanics considerably 
overestimates the curvature radius. Modeling of anisotropic effects related to crystal 
orientation with respect to hinge line demonstrated that practically identical predictions 
are given by both atomic-scale and continuum mechanics approaches. 

 

Fig. 5 Dependence of the curvature radius on the crystal orientation angle determined 
by AFEM and continuum mechanics approach. 
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