
Non-linear Controllers for Non-linear Model of  
Hovering Autonomous Underwater Vehicles 

 
*Boris Braginsky1), Ilan Zohar2) and Hugo Guterman3) 

 

1), 2), 3) Department of Electrical & Computer Engineering,  
Ben Gurion University of the Negev, Beer Sheva, Israel 

*borisbr@bgu.ac.il 
 

ABSTRACT 
 
Non-linear controllers for the attitude, altitude and position of the Hovering 

Autonomous Underwater Vehicle (HAUV) non-linear model are presented. These 
controllers allow the vehicle to reach any desired point in the horizontal and vertical 
planes. The controller was applied to a small-sized, torpedo-shaped HAUV with six 
degrees of freedom. The coupling between attitude and position makes the trajectory 
tracking control problem particularly hard. However, at least in the case of set-point 
control, it is possible to adopt a two decouple control strategy. A non-linear controller is 
applied for achieving attitude regulation, while a non-linear control strategy is applied 
for achieving smooth motion back to the desired position coordinates. The performance 
of the proposed control scheme is evaluated numerically. 
 
Keywords-: HAUV; Non-linear control 

 
 

1.  INTRODUCTION  
 
The field of Unmanned Underwater Vehicles (UUVs) is of increasing interest of the 

scientific community due to its many interesting applications. These vehicles are 
capable of performing complex missions in spite of the many limitations of embedded 
sensors, processing and control (Gianluc 2006). These vehicles can be divided into two 
groups: Remotely Operated Vehicles (ROVs), which are underwater vehicles that are 
physically linked, via a tether, to an operator and Autonomous Underwater Vehicles 
(AUVs), which navigate fully autonomously. These vehicles have civilian and military 
applications  and perform specific tasks such as search and rescue in high risk areas, 
autonomous sensing for weather forecasting, maintenance and fault detection of 
marine platforms and pipelines (oil and gas), underwater archeology and many more 
(Desa 2006). Generally, locomotion of the AUV is linear, while the ROV has hovering 
capabilities. Lately, Hovering AUVs (HAUV) have been proposed. The HAUV has 
several advantages over regular AUVs, such as maneuverability (it is possible move in 
any direction) and hovering (Torres 2012, Ferreira 2012 and Maalouf 2012).  

In this study, non-linear controllers for the attitude and position of the HAUV non-
linear model are presented. These controllers allow the vehicle to reach any desired 
point in the horizontal and the vertical planes. The control algorithms were applied to 
HAUV design and a model was built at the Laboratory of Autonomous Robotics (LAR) 
to participate in the AUVSI RoboSub competition (Hydro Camel Team, Fig. 1). The 
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platform is equipped with state of the art sensors and embedded processors, which are 
used to control the HAUV. Propulsion is generated by six brushless DC motors, two 
operating in each direction (Fig. 2). The HAUV dimensions are 150 centimeters in 
length and 30 centimeters in diameter, and the air weight is about 40 kg, while the 
water weight is almost neutral. The six thrusters placed on the hull provide six degrees 
of freedom (DOFs). 

 
 

 
Fig. 1 Torpedo-shaped HAUV 

 
 
The coupling between the attitude and the position makes the trajectory tracking 

control problem particularly hard. However, at least in the case of set-point control, it is 
possible to adopt a two decouple control strategy. A non-linear controller is applied for 
achieving attitude regulation and an independent non-linear control strategy is applied 
for achieving smooth motion back to the desired position coordinates. The proposed 
control scheme performance is evaluated numerically. 
 
 
2. MODELING  

 
In this section, the dynamic equations of the AUV’s motion are outlined. In general, 

any movement of a vehicle in a 3D space involves 6 degrees of freedom (DOFs). It is 
convenient to define two coordinate frames, as shown in Fig. 2. 

 

 
Fig. 2 The HAUV body frame and the motor thrust forces 
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The body frame mechanical system motion is given by Eq. (1). 
 

ሶݒ݉  ߱ ൈ ݒ݉ ൌ  ܨ
 

ሶ߱ܬ  ߱ ൈ ߱ܬ ൌ  ܯ
(1)

 
where J is the inertia tensor with respect to the body frame. 

The above equations describe how the forces and moments affect the translational 
and rotational velocity of the rigid body. The kinematic equations that will allow relating 
quantities defined in terms of the body coordinate system to quantities in the inertial 
system, and vice versa, must be stated. Roll, pitch and yaw are the rotations of the 
body about the x, y, and z axes, respectively. The transformation ܴ

 (described in Eq. 
(2)) was calculated by cascading the 3 separate angular transformation matrices. The 
order of the rotations from the inertial frame of reference was: rotation about the z-axis 
with the yaw angle ߰, then rotation about the y-axis with the pitch angle ߠ, and, finally, 
rotation about the x-axis with the roll angle 	߶ . The following coordinate transform 
relates a vector in body-fixed coordinates with a vector in inertial or earth-fixed 
coordinates (Etkin 1982). 

 

ܴ
 ൌ 

߰ܿߠܿ ߶ݏߠݏ߰ܿ െ ߰ݏ߶ܿ ߶ܿߠݏ߰ܿ  ߰ݏ߶ݏ
߰ݏߠܿ ܿ߶ܿ߰  ߰ݏ߶ݏߠݏ െݏ߶ܿ߰  ߰ݏ߶ܿߠݏ
െߠݏ ߶ݏߠܿ ߶ܿߠܿ

൩ (2)

 
where ߙݏ ൌሶ sin ߙܿ and ߙ ൌሶ cos  .ߙ

Let the Euler angles vector be ߞ ൌሶ ሾ߶, ,ߠ ߰ሿ் , the rotation speed vector be 
߱ ൌሶ ሾ, ,ݍ ሿ்ݎ  and the linear velocity in body axes be ݒ ൌ ሾݑ, ,ݒ ሿ்ݓ . We wish to 
express the relationship between the body angular velocity ߱ and the Euler vector rate 

of change ߞሶ ൌ ൣ߶ሶ , ሶߠ , ሶ߰ ൧
்

. Assuming that ߠ ∈ ቀെ గ

ଶ
, గ
ଶ
ቁ	, Eq. (3) is obtained and since 

det ܮ ൌ 1/ cos  ,is the relationship between the angular velocity and the Euler angle ߠ
rates may be inverted provided that ߠ ്  Assuming that this is the case, one has .2/ߨ

 

ሶߞ ൌ ሻ߱ (3)ߞሺܮ

 
where 
 

ܮ ൌ 
1 sin߶ tan ߠ cos߶ tan ߠ
0 cos߶ െ sin߶
0 sin߶ sec ߠ cos߶ sec ߠ

൩ (4)

 
This is not a problem, as the vehicle motion does not normally approach the 

singularity condition. If this situation were to occur, then it would become necessary to 
model the vehicle motion using extreme pitch angles, and the analysis could then resort 
to an alternative kinematics representation, such as quaternions. 
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Applying Eqs. (1) and (3), the motion of the vehicle is described by the following Eq. 
(5).  

ሶݒ ൌ െ߱ ൈ ݒ 
ܨ
݉

 

 
ሶߞ ൌ  ሻ߱ߞሺܮ

 
߱ሶ ൌ െିܬଵ߱ ൈ ߱ܬ   ܯଵିܬ

(5)

 
Since the water vehicle is considered a rigid body, the force F and the moment ܯ 

are due to the action of the hydrodynamic, propulsive, gravitational and buoyancy field 
forces. In the current analysis we neglect the gravitational and buoyancy forces, as the 
vehicle is almost neutral in the water. The result of the combined external forces and 
moments is described as follows (McEwen 2006) 

 

ܨ ൌ ሾܨԦௗ௬௧  Ԧௗ௬ௗܨ  Ԧ௧௨௦௧ܨ ሿ 
 

ܯ ൌ ሾܯሬሬԦௗ௬௧  ሬሬԦௗ௬ௗܯ   ሬሬԦ௧௨௦௧ሿܯ
(6)

 
In what follows, the cross product for ܿ, ݀ ∈ ܴଷ is expressed as a matrix operator, 

that is ܵሺܿሻ݀ ൌ ܿ ൈ ݀ ൌ െ݀ ൈ ܿ	where	ܵሺ∙ሻ is a 3 ൈ 3 skew symmetric matrix. Applying 
the rotation matrix ܴ

  in Eq. (2), the following state-space model of the considering 
system is obtained 

 

߯ଵሶ ൌ ߯ଶ 
 

߯ଶሶ ൌ
ܴ
 ሺߞሻܨ
݉

 

 
ሶߞ ൌ  ሻ߱ߞሺܮ

 
߱ሶ ൌ ሻ߱߱ܬଵܵሺିܬ   ܯଵିܬ

(7)

 
where χଵ ൌ ሾݔ, ,ݕ  is the position vector of the vehicle center of mass in terms of the	ሿ்ݖ
inertial frame, ߯ଶ ൌ ሾݔሶ , ሶݕ ,  .ሶሿ்ݖ

With regard to the  thrust produced by the 6 motors, the force and torque vectors of 
thrust in Eq. (6) are given by 

 

௧௨௦௧ܯ ൌ 5ܨሺߙൣ  ,6ሻܨ ሺ1 െ 5ܨ௭ሺݎሻ െ ,6ሻܨ 1ܨ௫ሺݎ െ 2ሻܨ  3ܨ௬ሺݎ െ  4ሻ൧ܨ
 

௧௨௦௧ܨ ൌ ሾܾሺ1ܨ  ,2ሻܨ ܾሺ3ܨ  ,4ሻܨ ܾሺ5ܨ   6ሻሿܨ
(8)

 
where ݎ௫,  is ߙ ,௭ are the distances from the motors to the body center of massݎ	݀݊ܽ	௬ݎ
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the angle of flipper for controlling the roll and ܾ  0	is the thrust factor. 
Vehicle body lift results from the vehicle moving through the water at an angle of 

attack, causing flow separation and a subsequent drop in pressure along the aft, upper 
section of the vehicle hull. This pressure drop is modeled as a point force applied at the 
center of pressure. As this center of pressure does not line up with the origin of the 
vehicle-fixed coordinate system, this force also leads to a pitching moment about the 
origin. In our model, Hoerner’s estimate of body lift was used (Hoerner 1985). In vector 
form, the HAUV lift force and lift moments are as follows 

 

ௗ௬௧ܨ ൌ ሾ0, ௨ܻ௩ݒݑ, ܼ௨௪ݓݑሿ் 
 

ௗ௬௧ܯ ൌ ሾ0,ܯ௨௪ݓݑ, ௨ܰ௩ݒݑሿ் 
(9)

 
In vector form, the HAUV damping forces and moments are as follows (Rentschler 

2003) 

ௗ௬ௗܨ	 ൌ ൣܺ௨|௨|ݑ|ݑ|, ௩ܻ|௩|ݒ|ݒ|  ܻ||ݎ|ݎ|, ܼ௪|௪|ݓ|ݓ|  ܼ||ݍ|ݍ|൧ 
ௗ௬ௗܯ ൌ |ݓ|ݓ|௪|௪ܯ,||||ܭൣ  ,|ݍ|ݍ||ܯ ௩ܰ|௩|  ܰ||ݎ|ݎ|൧ 

(10)

 
The variables from Eqs. (9) and (10) described in Table 1. 
 
 

Table 1 Non linear forces and moment coefficients 

ܺ௨|௨| Axial drag [kg/m] ܭ|| Rolling Resistance [kg*m2/rad2] 

௩ܻ|௩| Cross flow Drag [kg/m] ܯ௪|௪| Cross flow Drag [kg] 

ܻ|| Cross flow Drag [kg*m/rad2] ܯ|| Cross flow Drag [kg*m2/rad2] 

௨ܻ௩ Body lift Force [kg/m] ܯ௨௪ Body lift Moment [kg] 
ܼ|| Cross flow Drag [kg*m/rad2] ௩ܰ|௩| Cross flow Drag [kg] 
ܼ௪|௪| Cross flow Drag [kg/m] ܰ|| Cross flow Drag [kg*m2/rad2] 

ܼ௨௪ Body lift Force [kg/m] ௨ܰ௩ Body lift Moment [kg] 

 
 
3. STABILIZING CONTROLLER FOR THE ATTITUDE SUBSYSTEM 

 
3.1 Attitude regulation 
 
In the controller design it is assumed that all state variables are measured. It is 

important to state that both the ߞ and ߱ subsystems in Eq. (7) are independent of the 
position and velocity vectors ߯ଵ, ߯ଶ , respectively, while the attitude ߞ vectors are highly 
coupled with the vector ߱.  

We concentrate now on the attitude subsystem, defined by 
 

ሶߞ ൌ  ሻ߱ߞሺܮ
 

߱ሶ ൌ ሻ߱߱ܬଵܵሺିܬ   ܯଵିܬ
(11)
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Following the approach and results in (Zohar 2012) the following attitude controller 
is defined 

 

௧௨௦௧ܯ ൌ െ൫ܮሺߞሻߞܭ  ߱ܤ ܯሬሬԦௗ௬௧  ሬሬԦௗ௬ௗ൯ (12)ܯ

 
where ܭ ൌ ,்ܭ ܤ ൌ ்ܤ  0 are arbitrarily selected constant matrices. Using Eq. (11) 
and the Lyapunov condition, the stability of the system can be proved. 
 

ܸሺߞ, ߱ሻ ൌ
1
2
ሾߞܭ்ߞ  ߱

ሿ (13)߱ܬ்

 
Substituting ܯ௧௨௦௧ Eq. (12) into Eq. (11), the derivative of ܸ	along the trajectories 

of the resulting closed-loop system, namely,  ሶܸ ൌ ሶߞܭ்ߞ  ߱
ሶ߱ܬ்  , satisfies 

 

ሶܸ ൌ ሻ߱ߞሺܮܭ்ߞ  ߱
்ܵሺ߱ܬሻ߱  ݓ

்൫ܯሬሬԦௗ௬௧  ሬሬԦௗ௬ௗܯ  ሬሬԦ௧௨௦௧൯ (14)ܯ

 
When ܵሺ߱ܬሻ  is skew symmetric, then ߱

்ܵሺ߱ܬሻ߱ ൌ 0  and ܮܭ்ߞሺߞሻ߱ ൌ
߱
ܮ்

்  . Therefore Eq. (14) can be written as follows	߱ܭ
 

ሶܸ ൌ ሻ߱ߞሺܮܭ்ߞ  ߱
்൫ܯሬሬԦௗ௬௧   ሬሬԦௗ௬ௗ൯ܯ

െ߱
்൫ܮሺߞሻߞܭ  ߱ܤ ܯሬሬԦௗ௬௧  ሬሬԦௗ௬ௗ൯ܯ ൌ െ߱

߱ܤ் ൏ 0 
(15)

 
3.2 Position regulation 
 
Due to the non-linear coupling between the attitude and the position variables, the 

process of attitude regulation is associated with drift in the ߯ଵ ൌ ሾݔ, ,ݕ  .ሿ் coordinatesݖ
To reduce the resulting drift, an additional non-linear controller for position regulation is 
proposed. 

The position subsystem is defined by the following equations 
 

߯ଵሶ ൌ ߯ଶ 
 

߯ଶሶ ൌ
ܴ
 ሺߞሻܨ
݉

 
(16)

 
In order to stabilize the position subsystem, ܨ௧௨௦ is defined as 
 

௧௨௦௧ܨ ൌ ሾെܨௗ௬௧ െ ௗ௬ௗܨ െ ܴ
ሺߞሻିଵሺ߯ଵ݉  ߯ଶሻሿ (17)

 

where ܣ ൌ ்ܣ  0 are arbitrarily selected constant matrices. When det ቀܴ
ሺߞሻቁ ൌ 1	for 

all , then ܴ , ߰	݀݊ܽ	ߠ
ሺߞሻିଵ will always exist. Using the Lyapunov stability condition we 
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can prove stability of the system. The following Lyapunov function is proposed 
 

ଶܸ ൌ
1
2
ሺ߯ଵ

ଶ߯ܣ்  ߯ଶ
ଶሻ (18)߯ܣ்

 
Substituting ܨ௧௨௦௧  from Eq. (17) into Eq. (16), the derivative of ଶܸ	 along the 

trajectories of the resulting closed-loop system, namely, ଶܸሶ ൌ ߯ଵ
ଵሶ߯ܣ்  ߯ଶ

ଶሶ߯ܣ்  satisfies 
 

ଶܸሶ ൌ ߯ଵ
ଶ߯ܣ் 

߯ଶ
ܴܣ்

ሺߞሻܨ
݉

ൌ ߯ଵ
ଶ߯ܣ் 

߯ଶ
ሺെ߯ଵ݉ܣ் െ ߯ଶሻ

݉
ൌ െ߯ଶ

ଶ߯ܣ் ൏ 0 

 
 

 
Fig. 3 Attitude set point tracking 

 

 
Fig. 4 Position drift during the attitude regulation 
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Fig. 5 Attitude set point tracking 

 

 
Fig. 6 Position drift during the attitude and position regulation 

 
 
4. SIMULATION RESULTS 

 
Example 1: In this case, the HAUV control objective is to stabilize the attitude. The 

considered initial condition is ߞሺ0ሻ ൌ ቂ0, గ

, ቃߨ

்
(angles in radians) and the initial position 

is ߯ଵ ൌ ሾ0,0,0ሿ.	 Figs. 3 and 4 demonstrate attitude set-point tracking and position drift 
during attitude regulation. 

 
Example 2: This example demonstrates the action of the two controllers (attitude 

and position). The attitude non-linear controller tries to achieve zero attitude and 
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position. The non-linear controller objective is to keep the HAUV in its initial position 
(߯ଶሺ0ሻ ൌ ሾ0,0,0ሿ). The results of the attitude controller are shown in Fig. 5, while the 
behavior of the position controller appears in Fig. 6. 

 
 

5. CONCLUSIONS 
  
     The main goal of this research was to develop non-linear controllers for 

stabilizing the attitude and the position of a HAUV during hovering. A relatively simple 
controller for regulating the attitude and position subsystems for the highly non-linear 
HAUV system has been presented. Simulation results demonstrate the controller 
performance. 
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