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ABSTRACT 
 
This paper considers basic control problems in the model of a quadrotor-type 

helicopter. Using structural properties of the quadrotor analytical model we preset 
controllers for stabilizing the attitude and attitude/ altitude subsystems. Although the 
underlying system is highly nonlinear, the proposed controllers for the relevant tasks 
are relatively simple and, to a certain extent resemble the structure of PD-type 
controllers. In order to compensate drift in the quadrotor location (resulting from the 
nonlinear coupling between attitude and position) a two-mode control strategy has 
been implemented. Simulation results demonstrate the performance of the proposed 
controllers. A vision-based controller has been implemented in a small-scale quadrotor 
for autonomous indoor flight and for precise automated landing using the proposed 
control strategy. 

 
Keywords: Quadrotor; nonlinear model; attitude/altitude; stabilizing controllers; 
hovering; two-mode controller; vision control 
 
 
1.  INTRODUCTION  

 
Flying objects have always been a fascinating topic for scientists from various 

disciplines, encouraging all kinds of research and development. The broad field of 
applications spans both the military and civilian markets. The ability to execute 
unmanned missions such, as patrol and surveillance, rescue and tracking moving 
targets, makes the technological framework of flying objects a scientific challenge with 
many practical implications. 

Unmanned vertical take-off and landing system design requires the development 
and implementation of complex algorithms to control the nonlinear mechanical system. 
Among this kind of autonomous aerial vehicle, the quadrotor-type helicopter is very 
attractive for research and examination. Some relevant studies of this system are 
(Castillo 2004, Castillo 2005, Das 2009, Huang 2009, Michael 2009). For the sake of 
illustration, Fig. 1 presents a quadrotor in flight. 

Although the quadrotor is actuated by four motors, it is an underactuated dynamic 
system. Unlike the regular helicopters that have variable pitch angle rotors, the 
quadrotor-type helicopter has four fixed-pitch angle rotors. The quadrotor's motion is 
generated by varying the rotor speeds thereby changing the aircraft lift force and 
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Fig. 1 The md4-200 quadrotor helicopter of microdrones equipped with Galaxy S3 during flight 

 
 

attitude. The quadrotor tilts toward the direction of the slow spinning rotor, which 
enables acceleration along the selected direction. The spinning directions of the rotors 
are set to balance the moments and to eliminate the need for a tail rotor. This principle 
is also used to produce the desired yaw motions. A good controller should properly 
arrange the speed of each rotor so that the desired states change as required. 

The state-of-the-art in quadrotor control technology has drastically changed during 
the last few years (Kendoul 2007), and the number of projects tackling related problems 
has considerably increased. Most of these projects are based on commercially 
available devices like the draganflyer (draganfly), which have since been modified to 
have more sensory and communication capabilities. The work of (Bouabdallah 2004), 
for example, has considered simultaneously design and control for quadrotors. 

This study is concerned with problem of the basic control problems of the underlying 
autonomous system. In the first stage of this study, we shall present a simple new 
controller for regulating the attitude/altitude quadrotor dynamics. The underlying 
approach is based on the particular structural properties of the system under 
consideration, whose model is obtained by means of Lagrange formalism. Also, the 
system under consideration is highly nonlinear and the obtained controller (although 
nonlinear) is simple to realization and, in fact, resembles a PD-type controller. 

The coupling between attitude and position makes the trajectory tracking control 
problem difficult. However, at least in the case of set-point control, it is possible to 
adopt a two-mode control scheme as follows. Firstly, a nonlinear controller is applied in 
order to achieve attitude/altitude regulation, and then, a fine linear control strategy is 
applied in order to achieve smooth motion towards the desired position coordinates. In 
the first stage of the current study, we present an analytical approach that leads to an 
efficient control strategy for trajectory tracking. Next, the proposed control scheme 
performance is evaluated numerically. Finally, following the analytical study, a vision-
based controller has been designed and implemented for demonstrating the automated 
landing of a small-scale quadrotor in an indoor environment. 
 
 
2. MODELING 

 
The evolution of the system configuration in space can be described by the motion 

of the center of mass motion and by the motion about the center of mass. Let F  be the 
total force and M  be the sum of torques applied to the body. The mechanical system 
motion is governed by the equations. 
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=

= ,

dv
m F

dt
dL

M
dt

                                                         (1) 

 
where v  is the velocity of the mass center relative to the inertial frame { , , }ix y z , L  is 

the angular momentum and m  is the total mass of the rigid body. 
Let the body coordinate system be attached to the quadrotor as in Fig. 2.  

 
 

 
Fig.  2 The quadrotor body frame {}b , the inertial frame {}i , and the motor thrust forces 

 
 
Recall that the inertial coordinate system is designated by { , , }ix y z  and the body 

coordinate system, fixed in the body at the center of gravity is, { , , }b    , with unit 

vectors , ,b b bi j k  we have 

 

=b
b b b b b

dv
v i v j v k v

dt         
 

=b
b b b b b

dL
L i L j L k L

dt           
(2)

 
And, in terms of the body frame, (1) is given by 
 

=

= ,
b b b b

b b b b

mv mv F

J J M


  

 
 




 (3)

 
where J  is the inertia tensor with respect to the body frame. 

The above equations describe how the forces and moments affect the translational 
and rotational velocity of the rigid body. We should, however, also develop the 
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kinematic equations. This will allow us to relate quantities in the inertial system in terms 
of the body coordinate system and vice versa. To start with we, wish to obtain the 
coordinates of the motion path relative to the inertial frame. We first apply a sequence 
of rotations using Euler angles  , ,   . Initially, the vehicle coordinates coincide with 

the inertial frame coordinates. We made the following sequence of rotations: 1) a 
rotation   about the axis o  car transferring rying the body axes to 1 1 1{ , , }   . 2) A 

rotation   about 1o  carrying the system 1 1 1{ , , }    to 2 2 2{ , , }    and 3) a rotation 

about the 2o  carrying the system 2 2 2{ , , }    to the body frame { , , }b   . 

The aircraft velocity in terms of the inertial coordinate system is given by 
 
 

=i i i iv xi yj zk                                                         (4) 
 
 
and, by using Euler angles { , , }    and the associated sequence of rotations (for 

further details see, e.g., (Etkin 1982)), we have = b
i i bv R v , where b

iR  is the rotation 

matrix from the coordinates {}b  to the coordinates of {}i , that is 
 
 

= b
i

i b

x v

y R v

z v







  
  
  
     







                                                     (5) 

and 

= ,b
i

c c c s s c s c s c s s

R c s c c s s s s c s c s

s c s c c

           

           

    

  
    
  

                                 (6) 

 
 
where sinas aB  and cosac aB . 

 
Remark. Note that the sequence through which Euler rotations have been carried 

out is not always the same in the relevant references. In fact, to date no standard 
sequence has been agreed upon. Here we, adhere to the sequence of rotations 
presented in (Etkin 1982, Section 4.5). 

Let the Euler angles vector be  , ,
T   B . We wish to express the relationship 

between the body angular velocity b  and the Euler vector rate of change = , ,
T

     
    . 

Assuming that  / 2, / 2    , we have 

 

 = ,ib bL    (7) 

where 
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1 sin tan cos tan

= 0 cos sin

0 sin sec cos sec
ibL

   
 

   

 
  
  

                               (8) 

 
and det = 1/ cosibL  . Note that the matrix L  is not a rotation matrix , in general, T

ib ibL L . 

Recalling that  = , ,
T     the equations of motion of the aerial vehicle are given 

(using (3) and (7)) by 

1 1

= /

= ( )

= .

b b b b

b

b b b b

v v F m

L

J J J M



  

   

  

  







                                (9) 

 
Since the considered rigid body is a flying object, the force bF  and the moment bM  

are due to the action of the aerodynamic, propulsive, and gravitational field forces. In 
the current analysis we neglect the aerodynamic generalized forces. 

In what follows the, cross product for 3,a b R  is expressed as a matrix operator, 

that is   = =S c d c d d c    where  S   is a 3 3  skew-symmetric matrix. Applying the 

rotation matrix b
iR  in (6), we arrive at the following state-space model for the 

considered system 

 

 

1 2

2 3

1 1

=

= /

= ( )

= ,

b
i b

ib b

b b b b

R F m e g

L

J S J J M

 

 

  

   













                              (10) 

 

where    1 1 1 1= , , , ,
T T

x y z x y z B  is the position vector of the vehicle center of mass in 

terms of the inertial frame,    2 2 2 2= , , , ,
T T

x y z x y z   B ,  3 = 0,0,1
T

e ,  = , ,
T     and g  

is the gravity constant. 
The thrust produced by the i th  motor is given by (Bouabdallah 2004) as 2=i iT b  

where > 0b  is the thrust factor and i  is the angular velocity of the rotor. The force 

and torque vectors in (10) are given by (note that the vector bF  acts in the negative 

direction of the bz  axis in Fig. 2) 
 

   
 

 

2 2 2 2
1 3 4 2

2 2 2 2
1 3 2 4

4 2
=1

= , ,

         

= 0,0, ; = > 0,

b

T

b i i

M lb lb

d

F u u b

    

    
 

                                       (11) 

 
where l  is the distance from the motor to the body center of mass and d  is the drag 
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factor. The last equation can be represented by the following matrix equation 
 
 

2 2 2 2
1 2 3 4, = , , ,

0 0
= ,

0 0

T TT
bu M H

b b b b

lb lb
H

lb lb

d d d d

         
 
  

 
   

                                    (12) 

 
 
where H  is a nonsingular matrix (in fact 3 2det = 8H b dl ). 

Observing (11) and (6), the following representation of (10) will be useful later. 
 

 

1 2

2

1 1

=

0

= / 0

= ( )

= .

ib b

b b b b

c s c s s

s c s c s u m

c c g

L

J S J J M

    

    

 

 



  

   

    
       
     











                                     (13) 

 
 
 

3. STABILIZING CONTROLLER FOR THE ATTITUDE/ALTITUDE SUBSYSTEM 
 
3.1 ATTITUDE REGULATION 
 
In the controller design we assume that all state variables are measured. It is 

important to note that both the    and b subsystems   in (10) are independent of the 

position and velocity vectors 1 , 2 , respectively, while the latter vectors are highly 

coupled with the attitude vector  . 
We concentrate now on the attitude subsystem, namely, the equations 

 
 

 1 1

= ( )

= ,

ib b

b b b b

L

J S J J M

  

   




                                 (14) 

 
 

Following the approach and results in (Ailon 2004), one obtains the following simple 
result for attitude regulation. 

 
Lemma 1. Consider (14) and let the applied torque be 
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  = T
b ib bM L K B                                  (15) 

 
where = , = > 0T TK K B B  are arbitrarily selected constant matrices. Then, the trivial 
solution of (10) is locally asymptotically stable.  

 
Proof. Consider the Lyapunov candidate function 
 

1
( , ) = ,

2
T T

a b b bV K J                                                (16) 

 
where = > 0TK K . Using (15) and substituting bM  into (10), the derivative of aV  along 

the trajectories of the resulting closed-loop system (10), namely, = T T
a b bV K J      

satisfies  
   
 

=

      

   = 0.

T T
a ib b b b b

T T T
b ib b b

T
b b

V KL S J

L K B

B

     

    

 



 

 



                                      (17) 

 
The second equality follows from the facts that the matrix  bS J  is skew 

symmetric and hence   = 0T
b b bS J   , and that    =T T T

ib b b ibKL L K      . Invoking 

the LaSalle’s invariance principle (Khalil 2002) the lemma follows.  
 
Remark: (i)- The stability property is local since ( )ibL   is defined only for 

 / 2, / 2    . Note that the controller in (15) is independent of the system 

parameters and it is quite similar to a PD controller. (ii)- The controller (15) is 
independent of the system's physical parameters ( m , and J ). 
 

3.2 ATTITUDE/ALTITUDE REGULATION 
 
Observing the matrix b

iR  in (6) and the vector bF  in (11), the attitude/altitude 

subsystem can be written as 

 

1 2

2

1 1

=

= cos cos /

= ( )

= .

ib b

b b b b

z z

z u m g

L

J S J J M

 

  

   

 











                                          (18) 

 
The control objective is to stabilize (locally) the trivial solution of the system (18) 

with the state 8
1 2= , , ,

TT T
bz z R       while keeping > 0u  (see (11)). (Without loss of 

generality we take 1 = 0dz  as the height at the equilibrium point.) 
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Lemma 2. Consider the system (18) and let the applied torque bM  be as in (15) and 

u  be 
 1 2=

[cos cos ]

g z z
u m

 
 

 
                                                  (19) 

 
 

for arbitrary selected constants , > 0  . Then, the trivial solution of the resulting 
closed-loop system is (locally) asymptotically stable and, provided the initial state is in a 
sufficiently small ball of the origin, ( ) > 0u t  for all 0t  . 

 
Proof. Applying the feedback (19) in the second equation of (18) the, first two 

equations reduce to the linear subsystem  
 
 

1 2

2 1 2

=

= .

z z

z z z  




                                                   (20) 

 
 

Clearly, the system (20) is asymptotically stable for any pair , > 0  . The proof of 
the lemma is accomplished by recalling Lemma 1 and noting that, provided the initial 
state of (18) is sufficiently close to the origin,  ( ), ( ) / 2, / 2t t      and ( ) > 0u t  in (19) 

for all 0.t   
In a later stage of this study we shall consider model linearization and thus it is 

worth noting now that a possible Lyapunov function for (20) is = / 2T
zV Z QZ  where 

 1 2= ,
T

Z z z  and = > 0TQ Q  satisfies the equation 
 
 

2= .TQA A Q I                                                     (21) 
 
 

2I  is the 2 2  identity matrix and A  is the system matrix, that is =Z AZ  and the 

derivative of zV  along the solution of (20) is  
 

= .T
zV Z Z                                                        (22) 

 
 
 

4. A TWO-MODE CONTROLLER 
 
 
Due to the nonlinear coupling between the attitude and the position variables, the 

process of attitude/altitude regulation is associated with drift in the { , }x y  coordinates. 
To reduce the resulting drift, we propose a two-mode control scheme as follows: firstly, 
using the controllers (15) and (19) attitude/altitude regulation is obtained, and then a 
drift compensation procedure takes place. 
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The first action of the two-mode control is based on the nonlinear controller 

= ,
TT

bU u M    where bM  is given by (15) and u  by (19). The second mode which, 

ensures smooth motion back to the desired position coordinates while keeping the 
attitude/altitude state in almost the desired position is, based on system linearization. 
System linearization techniques for quadrotor control appear quite often in the relevant 
literature; two examples are (How 2008) and (Michael 2010). However, here we 
consider a different approach that allows us to present properties of the obtained linear 
model that are useful for designing the second controller mode. 

To this end, consider the quadrotor model in (13) with the matrix ( )ibL   in (8). In the 

trivial solution of the subsystem (18) = 0bM  and (since then = = 0  ) =u mg . Let us 

take 1=u mg mu  with 1 = 0u  in the equilibrium point of (18). For this representation of 

u  , Eq. (13) becomes  

 

1 2

2

1

1 1

=

=

    

= ( )

= .

ib b

b b b b

gc s c gs s

gs c gs c s

gc c g

c s c s s

s c s c s u

c c

L

J S J J M

    

    

 

    

    

 

 



  

   

  
  
   
  
   
  











                                          (23) 

 
 

Eq. (23) is now written as  = ,f    where, 1 2= , , ,
TT T T T

b        is the state 

vector and 1= ,
TT

bu M     is the input. We have  0,0 = 0f . We are considering 

designing a state feedback control law = ( )    that stabilizes the system (23), which is 
the control objective of the second mode of operation. Linearization of (23) about = 0  
and = 0  results in the linear system  
 
 

= ,A B                                                       (24) 
 
where 
 

   
=0, =0 =0, =0

, ,
= ; = .

f f
A B

   

   
 

 
 

                                (25) 

 
 
After some computations (see (8) and (23)) we arrive at the following linear model 
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1 2

2 1

1

=

0 0 0

= 0 0 0

0 0 0 1

=

= .
b

b b

g

g u

M

 

 

 


   
      
      









                                          (26) 

 
 

We note that the linear system (26) with the state 12
1 2 1= , , ,

TT T T T
bX R        and 

input 4
1= ,

TT
bu M R      is controllable. In fact, the column blocks that span the column 

space of the controllability matrix are 
 
 

3

3

3

3

0 0 0

0 0 0
, , , ,

0 0 0

0 0 0

I

I

I

I

       
                                    




                                             (27) 

 
 

where 3I  is the 3 3  identity matrix and 3I  is the 3 3  secondary diagonal matrix with 

entries 31 = 1i , 22 =i g , 2
13 =i g  and zeros otherwise. Hence, one can design a state 

feedback = K   (where 4 12K R   is the gain feedback matrix) such that the resulting 
closed-loop system (24) (and equivalently (26)) has an asymptotically stable trivial 

solution. Hence, (18) with 1=u mu  and 1= , =
TT

bu M K      is asymptotically stable. 

 
Remark. The controllability property is important because it allows one to tune the 

controller action in the second mode of operation in such a way that the quadrotor will 
converge smoothly towards the desired operating point while keeping the attitude and 
altitude within a small neighborhood of the zero state. (Of course, using the same 
approach the zero altitude ( = 0dz ) can be replaced by any other reference altitude dz .) 

However, the following point should be emphasized. The proposed approach validation 
is guaranteepd if the drift in the xy  plane during the first mode of operation is 
sufficiently small in the sense that once the second control mode is applied, the vehicle 
initial condition belongs to the region of attraction of the resulting closed-loop system 
with the applied state-feedback. We assume that the time-constant of the attitude mode 
is much shorter than the time constant of the system dynamics in the xy  plane. In fact, 
the acceleration of the aerial vehicle in the xy  plane depends only on the projection 
along this subspace of the applied forces resulting from the motor actions. 
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5. VISION-BASED SYSTEM 
 
A computer vision system combines both hardware and software to extract the 

marker position (relative to the quadrotor coordinates), using an Augmented Reality 
(AR) method (Wagner 2007), from video stream images. In our case the vision system 
is based on an android smart phone (Samsung galaxy s3) with a QUAD CPU, including 
a video color camera and a set of triple axis sensors: accelerometer, gyro and 
magnetometer. The measurements from the sensors are combined together to 
calculate the orientation of the android, relative to the marker. Bluetooth module 
installed on the md4-200 enables us to connect to the android and send a control 
command directly to the drone. The software developed for this task runs directly on 
the android in Java and C++ using arToolkit (ARToolworks) for the android module. 
The whole vision system runs in real-time at 30 frames per second. The vision system 
extracts the target’s position and calculates the position of the origin of the target 
relative to drone, using the IMU data to calculate the orientation. The algorithm for 
marker detection is based on arToolkit, this tool kit provides the position and orientation 
of the marker. Experiments show that the accuracy of the position and the orientation is 
not satisfactory, for that reason we, developed some tools to include a calibration 
process in order to fix the accuracy of the position. In order to correct the orientation of 
the camera we implement an IMU on the android using the algorithm of (Mahony 2005). 
A Kalman filter is then implemented in order to improve the estimation of the speed and 
position of the marker. All data estimations including data from both IMU’s (drones, 
android), were combined and comprised an input for the two-mode controller. The 
whole process runs at 200 Hz  on the android, the commands are sent to the drone via 
Bluetooth. 

 
 

6. SIMULATION AND EXPERIMENTAL RESULTS 
 
6.1 PLATFORM DETAILS 
 
Fig. 1 shows the md4-200 by microdrones company (microdrones). This platform 

was equipped with the state of the art sensors and double embedded processors. The 
navigation and control system is based on a MEMS inertial sensor and a processor 
board, that hosts the closed-loop stabilization routines. We apply a vision based system 
to verify experimentally the validity and the efficiency of the proposed control algorithms. 
The android smart phone is mounted inverted to the bottom of the cross-frame where it 
has a 360o  field of view obstructed only by four vertical carbon-fiber rods that are 
extended down to the landing gear. The phone enables us to control the drone by 
vision. The applied two-mode control strategy is as follows: firstly the nonlinear 
controller minimizes the error between the current attitude and the desired one, and 
then a linear controller operates, and the quadrotor slides towards the marker and 
lands smoothly. The position feedback is provided by the camera. The simulation 
results are obtained based on the data of Table 1 associated with the physical 
parameters of the quadrotor described above. All units in the table are in the MKS 
system. 
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Table 1 The quadrotor physical parameters and controller gains 

Variable Value Variable Value 

m  0.8  l  0.27  

J  0.0078  J   0.0080  

J   0.034  sT  1 3e   

b  72.88 10  d  98.64 10  

K  3180I  B  3240I  

  4    4  

 
 
 

6.2 SIMULATION RESULTS 
 
This subsections is devoted to demonstrate by simulations the controller capabilities 

in various flying tasks of the quadrotor whose technical features and physical 
parameters are presented above. 

 
Example 1. In this case, the quadrotor control objective is to stabilize the attitude while 

maintaining a constant altitude. The considered initial condition is  (0) = / 6, / 6,0
T    

(angles in radians) and the pre-specified altitude is = 10[ ]h m  above ground, or, in 

terms of the inertial coordinate system = 10[ ]dz m  (recall that in a vertical position the 

positive direction of the z -axis points towards the ground). Fig. 3 demonstrates attitude 
set-point tracking and the quadrotor altitude. 

 
 

 
Fig. 3 Time history of the attitude variables while maintaining  

a constant altitude and regulating the attitude 
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Fig. 4 Drift in the { , }x y  coordinates during attitude/altitude regulation 

 
 
 

Example 2. In this example the effect of the coupling between attitude and position 
is illustrated. While the controller ensures stabilization of the attitude/altitude subsystem, 
the quadrotor position changes, as demonstrated in Fig. 4. In this example the initial 
condition vector is 1 2[ (0), (0), (0), (0)] = 0T T T T T

b    . At = 5t  [sec.]  we implemented a 
 
 
 

 
Fig.  5 The action of the second mode controller for correcting drift  

in the { , }x y  coordinates during attitude/altitude regulation 
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Fig.  6 The quadrotor in a hovering task 

 
 
 
constant torque disturbance  = 2, 2,0bM diag  (the torque units are [ ]N m ) during 2  

[sec] . 
 
Example 3. This example demonstrates the action of the two-mode controller. 

Initially the nonlinear controller is acting for achieving zero attitude at a desired altitude 
and then the second mode controller is implemented for driving the quadrotor back to 
the desired { , }x y  location. The results are shown in Fig. 5. In this example the initial 
conditions and the injected disturbance on the applied torque are the same as in 
Example 2. At = 8t  [sec.] , we switched to the second control with 

 1= , =
TT

b du M K        where 12R   is the state vector of (26) (or equivalently 

(24)), d  is the desired state vector (with = 0d ) and 4 12K R   is the gain feedback 

matrix (see the previous section).  
 

 
6.3 APPLYING VISION-BASED FEEDBACK IN INDOOR EXPERIMENTS 
 
This subsection demonstrates the two-mode controller capabilities by means of 

vision-based marker detection. The quadrotor was commanded to hover. The quadrotor 

initial attitude is  (0) = 0,0,0
T . The desired height is = 1.5[ ]h m , namely, = 1.5[ ]dz m ). 

The objective is to ensure (0) 0   and dz z , while keeping the quadrotor above a 

designated marker. Fig. 6. show the quadrotor during hovering. The standard deviation 
values of the position error are 1.81 [cm] in x, 1.48 [cm] in y and 8.47 [cm] in z. The 
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relative high standard deviation, in the z axis is due to the ground effect and low 
resolution of the barometer sensor. 
 
 
7. CONCLUSIONS 

 
The main goal of this research was to develop nonlinear controllers for stabilizing 

the quadrotor attitude and altitude configuration during hovering. We have established 
a relatively simple controller for regulating the attitude/altitude subsystem for the highly 
nonlinear quadrotor model. Next, the paper proposes a two-mode controller for 
compensating the drift in the quadrotor location due to the nonlinear coupling between 
attitude and position. The first mode is based on the attitude/altitude nonlinear 
controller and in the second mode the proposed controller is based on a linearized 
model. In constructing the second-mode controller we apply the feedback pole 
placement technique for achieving smooth convergence towards the desired location 
while keeping the attitude almost in the zero-state. Simulation results demonstrate the 
controller potential and performance. Application of the approach in a real system 
equipped with a vision-based controller for safe landing has been studied and 
demonstrated in an indoor environment. 
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