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ABSTRACT 
 

     Three-phase landing for a 7-links 2D cat model is studied using semi-flat dynamic 
and force-control methods on rigid and flexible surfaces, considering switching 
constraints and a spring-damper model on impact points respectively, in presence of 
rotational angle, velocity, torque constraints and control signal delay. The landing 
phases are: pre-landing in which the robot adopts the optimal configurations to absorb 
the in-joint impulses, single-contact in which the robot settles on one pair of its limbs, 
and double-contact in which the second pair impacts the ground. In each step, desired 
inputs are derived using semi-flat equations so that the body center of mass trajectory 
and free limbs’ maneuver can guarantee the model stability and maintain desired 
impact forces in contacting points. Newtonian equations are considered to account for 
states’ change in all rapid foot-ground impacts and resulting in-joint impulses. In-joint 
contacts due to reaching rotational limits are modeled using a simple switching method. 
Finally the proposed path planning method efficiency in high jumps is investigated 
through simulations and it is showed that despite the easier dynamic modeling of the 
flexible surface idea and its more generality, the input generation using dynamic 
inversion is more difficult and less accurate in this case. 
 
1. INTRODUCTION 

Motion dynamics of cat species has always been attractive to be studied. Flexibility 
in motion due to specific skeleton and complex muscle-skeleton mechanism, control 
concepts, special way of running, high speed direction change while moving, ability of 
twisting the body during free fall, and landing on four limbs were investigated in 
literature and the results have been used in different branches such as control, robotics 
and aerospace. Reducing impulses while maintaining stability, damping pre impact 
kinetic energy and reducing linear momentum are  important facts in landing of a cat 
jump. This is similar to air vehicles, space ships, parachute or athletes’’ landing. 
Controlling maximum in-joint or contact point impulses by deforming the body, such as 
bending knees and lowering upper body in a human high jump landing, is called soft 
landing [1] which needs specific maneuver path planning. 
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Despite vast publications on human beings, investigating landing dynamic of cat 
species and other animals is quite rare in literature. The only publications on cats are 
experiments on muscle reflection in high jump landing to explore muscle specifications 
and not the maneuver dynamics ,[2]. Reback showed that cat muscles become active 
30 ms before contact, however landing maneuver is the same for different jump heights 
from 0.4 to1 m with different joints’ angular velocities [3]. Agile dog landing experiments 
focusing on their injury prevention [4] and a frog conceptual design able to jump and 
land based on the real animal dynamics without considering impulses in Harbin 
university are the most relevant publications concerning other animals landing motion. 
Human landing biomechanics [5], athletes’ touchdown dynamics [6] using dynamic 
models or finite element methods [7], and fall detection and injury prevention for 
elderlies [8-10] are widely studied. Explorations on human falling impacts modeling [11] 
and athletes’ landing optimum path planning and configuration [12-14] specially for 
gymnasts [9, 15, 16] are similar to the proposed topic in this research. Furthermore, 
parachute touchdown planning studied experimentally in [17] is another similar 
research on human landing. It is shown that considering soft tissue and deformable 
bones affect landing impulses in human beings using wobbling mass model. It also 
predicted that impact forces and accelerations are 1.5 to 2 times less than a rigid model 
which is in better agreement with real experiments [8, 16]. More complete models 
consider stiffening of muscles before the impact [8, 14] by reducing the wobbling mass 
amount [16]. The soft tissue effects are not considered in our model, since the results 
are based on a rigid cat robot, not a real animal.  

Considering impact impulses as the main injury cause was route to defining hard 
and soft human landing methods such as trainings in free running with large waist and 
leg bending, and firm no joint bend maneuver in gymnastic respectively [18]. Filling 
lungs with air as an insufficient method of decreasing impulses [19] and increasing 
body weight effect on these impacts [20] are investigated as well. It is showed that in a 
common height jump the landing impulses exceeds to 4.5 times the body weight for 
agile dogs [4] and 2.9 to3.4 times for a human being [7]. Maximum of 8 to 14.4 times 
the body weight is reported for athletes and gymnasts [8]. 

Rok So’s study in 2004 using ZMP method of stability analysis, in-joint impulses 
investigation and dynamic inversion method of path planning of a three phase 2D 
gymnast’s landing model is one of the most comprehensive studies in this field [10] 
which is completed by Sheets by adding hands in 2007 [16]. Some human running 
investigations consider a continuous jump and 2D spring-mass landing model which 
can be a source of inspiration here too ,[21]. 

Landing and contact impulses analysis in robotics are studied for spaceship entry 
missions on other planets (especially mars) ,[22], some bio-inspired jumping robots [1, 
23-25], hopping robots [1], and humanoid walking robots stability [26], and fall injury 
prevention [27]. Wong’s 2D four legs robot landing model uses inverse jump kinematics 
to plan landing path for kinetic energy damping and suggests high speed evaluation of 
a simple model to account for the best leg-ground angle in impact instance in order to 
minimize the landing impulses and ground forces [24]. Yamakita represents a switching 
control based on a two legs gymnast robot touchdown condition and configuration [25]. 
Sato introduced a set of input signals to reduce the contact point relative velocity w.r.t. 
surface as the leg moves toward the ground to control contact impulses [1, 28]. 
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Furthermore, it is shown that reducing in-joint impulses in weakest direction which is 
usually perpendicular to the elements’ longest axis is more important than contact point 
impulses [10]. While most of the studies do not consider continuous impacts in landing 
touch down or represent a complicated model for that in running dynamic models, 
Tedrake represents a Lagrangian dynamic model for a running robot on a rigid surface 
using a switching constraint to model the contact and separation of the leg tips without 
impact analysis in combination with a forward optimization method for motion path 
planning [29]. Rigid surface Modeling means no penetration of the contact points and 
considering a pivot joint in contact place which will results in more continuous impacts 
before the settlement [10, 23, 29], while in a deformable spring-damper surface model 
the resulting forces are related to contact point penetration to the ground [1, 12, 30]. 
Rigid models are used for running analysis while the deformable one are widely used in 
landing and impact analysis and accurate contact simulations for medical force control 
applications [6, 31, 32]. 

In-joint impulses are torques and force impulses exerts in constrained direction of 
free joints [10] and derived based on integration of close formulation of Newtonian EOM 
of separate elements [31]. Pain modeled a gymnast landing on a deformable surface, 
considering wobbling masses, deformable bones and in-joint impulses and showed 
minimizing in-joint impulses are more important [12]. It is also showed that ankle and 
knee joints absorb more energy than waist in human soft landing [20]. 

Unfortunately, there is no comprehensive modeling and path planning study on high 
jump landing maneuver of animals such as cats considering essential effects of 
Continuous impacts and in-joint impulses aiming to build a real robotic model. Since 
side forces are small in four legs animals landing [9], in this research, the maneuver 
dynamic modeling and path planning for a 7 links 2D model from first foot pair ground 
contact through its complete settlement are studied using a three phase model. The 
landing phases are: pre-landing in which the robot adopts the optimal configurations to 
reduce the in-joint impulses efficiently with a sudden activation of joint motors and 
absorb more kinetic energy in subsequent phases, single-contact in which the robot 
settles on one pair of its limbs and lasts until the second legs’ pair tips reach the ground, 
and double-contact in which the second pair impacts the ground and the robot 
momentum is decreased in a planned manner to reduce contact forces of the legs. 
Continuous and exact impact modeling of legs’ tip and joints on a rigid surface and a 
deformable surface model, and easy to derive and implement matrix method for 
dynamic modeling and dynamic inversion path planning, called TMT method, are the 
main features of this research. 

Although the cat free fall is not considered in this research [33], in pre impact phase, 
optimal angles for the spatial rotation of the model front body have been found using 
direct optimization. In contact instance, desired joint motors’ input are derived using 
semi-flat model to satisfy desired goals and assumed constraints in order to lower the 
impact impulses by reducing contact leg tip absolute speed relative to the surface. 
Newtonian impact equation accounts for contact point impulses and after impact 
velocities while the model configuration remains unchanged. In single contact phase, 
for rigid surface model a switching constrained dynamic method, and for deformable 
surface model a spring-damper method is considered. The model is assumed to be in 
contact while lags are touching the ground and ground normal force is positive. So leg-
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ground separations are monitored and every velocity changes due to re-contacts are 
calculated using the Newtonian equations. Reaching floating leg tip to the ground with 
zero velocity vector, maintaining stability considering static stability index and lowering 
contact point force vector instantly to the model static weight are the goal constraints in 
input signal generation in this phase. Reaching joints’ configuration and velocity limits 
are modeled by switching a constraint on and off, to stop their rotations and velocity 
increases respectively, without any impact modeling. Double contact phase started as 
the second leg pairs reach the ground. Here it does not mean that both feet are in 
contact with the surface since they might be on fly due to a previous impact. However 
the goal constraints in the path planning method is changed to reduce both contact 
point force vectors and lower the model center of mass position and velocity (COM) in a 
smooth manner to settle the model. Goal constraints on force vectors are derived so 
the legs’ tip which is not in contact tends to reach the surface as fast as possible. 
Furthermore the reduced degree of freedom (DOF) due to double contact in rigid 
surface model is considered which is not encountered in the deformable surface. The 
two first phases’ equations of motions (EOM) have some minor differences with in 
which leg pairs that contact first are reflected. 

The results of this study is a comprehensive model and exact path planning method 
which can be implemented in a real cat robot, and as an inspiration for similar research 
on human fall, athletes’ and parachute touchdown, and other kinds of robots and space 
ship landing and path planning as well. It considers various control, configuration, 
sensory and motor limitations in a real application by means of a simple easy to use 
switching constrained matrix dynamic model. 
 

  
 

Figure 1. 7 links 2D cat model in (top); Deformable surface model in single and multi-

contact phase (down) 
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2. Modeling 
 

2.1 7 links 2D Cat Model 
Figures 1 shows the 7 links 3D model and Deformable surface single and multi-

contact phase respectively. For the free fall model the spatial frame is attached to the 
front body at its COM position (the natural position of gyroscope sensor.) Free fall 
model parameters are as in [33] derived using a pre-conceptual model of a cat robot 
based on the animal anatomy [34] and MIT Cheetah model [35] using SolidWorks 
software, but are not necessarily as the real values in a natural cat (Table (1)). 
Considering the cats’ typical hands’ movement and for simplicity in the distributed 
model analysis, the rear hands’ wrist angle considered to be equals to rear hands’ 
shank angle and in opposite signs. Tail is fixed upright too. Shank angles stops and do 
not follow the above relation as they reach their limits. The free fall phase is modeled 
as in [33] and not repeated here. 

 
2.2 Motion Dynamical Modeling (TMT) 
 
Constrained Rigid Surface Model   A matrix form of EOM Eq. (1) using TMT method 

in Eq. (2) is used to derive dynamic models ,[36, 37]. ࡹഥ  are ࣅࢊ ୉୓୑ andࢊ ,ࣅ ,ࢗ ,ୡ୬ࢀ ,
inertial and mass matrix in Lagrange equations, constrained generalized velocities 
coefficients matrix, generalized coordinates vector, Lagrange multipliers vector, vector 
of other terms in Lagrange equation, and vector of other terms in constraint equation 
derivative respectively. Constraints are differentiated multiple times, so their order of 
differentiation equals that of the EOM, which is 2 here [38]. 

 
(1) 

 

൤ ࡹ
ഥ ୡ୬ࢀ

୘

ୡ୬ࢀ ૙
൨ . ቂ ሷࢗ

െࣅ
ቃ ൌ ൤

୉୓୑ࢊ
ࣅࢊ

൨ 

 
Using this forms of EOM enable us to implement numerical matrix inverse methods 
simply and derive the vector of unknowns (ሾࢗሷ െࣅሿሺ୘ሻ) in all of this research sections.  

 
TMT Method   TMT method is a simple, clear and optimum method which eliminates 

the highest order derivatives in each step and results in a simplified matrix form of 
unconstrained EOM, ideal for numerical calculation of complex and large dynamic 
systems. Here ࢌ ,࢏ࡵ ,࢏࢓ ,ࡹ ,ࢀ and ࡽ୬ୡ are transformation matrix for multi body links’ 
COM position and rotation in terms of generalized coordinates, system’s mass and 
inertia matrix, ith link mass and inertia matrix, and conservative and non-conservative 
forces’ virtual work vector respectively. Jacobian operator order and independent 
variables of each vector or matrix function are shown using an Einstein like notation [36, 
37]. 

 
(2) 

 

ࢀ ൌ ,ሻࢗሻ,ሺࢗሺࢀ ࢊ ൌ ൫ࢗࢀሶ ൯
,ሺࢗሻ
, ሶࢗ ൌ ሶࢗሻࢗ,ࢗሻ,ሺࢗሺࢀ ሶࢗ , 

ࡹ ൌ diagൣ࢓ଵ࢓ଵ࢓ଵࡵଵሾ૜ൈ૜ሿ 	⋯ ൧, ഥࡹ ൌ ࢀ
ሺ୘ሻ
 ,ࢀࡹ

୉୓୑ࢊ ൌ ࢀ
ሺ୘ሻ

ቂ෍ࢌ െࢊࡹቃ ൅ ,୬ୡࡽ ሷࢗഥࡹ ൌ  .୉୓୑ࢊ
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Deformable Surface Model   Deformable surface model needs no constraint on 
contact points and forces due to parallel spring-damper system deformation, which are 
fixed in one end to a rigid base and the other end to leg tip, are exerted on these points. 

 
2.3 Impact Model 
 
Newtonian Impact model   Sudden change in velocities (generalized coordinates 

differentiates) due to impact while the configuration remains unchanged, derived by 
solving two Newtonian impact equations [10] which are based on integration of model 
EOM on the impact infinitesimal duration, and relative after and before impact velocity 
vectors for contact point w.r.t. surface (Eq. (3)) [36, 37]. ࢀୡ୮ ሶࢗ , ሺേሻ ࣋ ,  and ࡱ  are 
transformation matrix for contact point position vector in terms of generalized 
coordinates, after and before contact generalized vector differentiate, contact impulse 
vector and diagonal matrix of impact coefficients. 

 
(3)

  ቈ
ࡹ ሺ୘ሻୡ୮ࢀ
ୡ୮ࢀ 0

቉ ൤ࢗሶ
ሺାሻ

࣋
൨ ൌ ቈ

.ࡹ ሶࢗ ሺିሻ

െࡱ. ሶࢗୡ୮ࢀ ሺିሻ
቉ → 

 
ሶࢗୡ୮ࢀ ሺାሻ ൌ െࡱ. .ୡ୮ࢀ ሶࢗ ሺିሻ 

ሶࢗ.ࡹ ሺାሻ ൅ ୡ୮ࢀ
ሺ୘ሻ. ࣋ ൌ .ࡹ ሶࢗ ሺିሻ 

 
In-joint impulses   In-joints’ force and torque impulses for each body can be found by 

integrating a close Newtonian formulation of separate links’ EOM  as in [31]. 
Substituting contact point impulses and before and after generalized coordinates 
differentiations using Eq. (3) and zero value for free ends’ impulses in Eq. (4), one can 
solve equations for joint impulses. Here േ superscripts mean after and pre impact 
values and ݉ሾ௝ሿ, ࡵୡୠ ሾ௝ሿ ୡୠ࢘ , ሾ௝ሿ, ∆ ࣓௕ ሾ௝ሿ, ∆ ௕࢜

௕
௖ሾ௝ሿ, ࣋௕ ఛሾ௝ሿ, ࣋௕ ௙ሾ௝ሿ, ࣋௙ఛ ୧୧࡮ ,േࢗ ,  and ୢ࢏ୡ୰୤  are ith 

link mass, inertia, joint position vector relative to link COM represent in base reference 
coordinate, rotational and linear velocity sudden change before and after impact, joint 
torque and force impulses, impulse vector, pre and post impact generalize coordinates 
as in Fig. (1), near diagonal matrix with േ1 elements for effective impulses on each link 
set of equations, and contact point impulse vectors calculated from Eq. (3). 

 
(4) 

 
݉ሾ௝ሿ. ∆ ௕࢜

௕
௖ሾ௝ሿ ൌ െ ௕࣋ ௙ሾ௝ሿ ൅ ௕࣋ ௙ሾ௝ାଵሿ 

࢈௖ࡵ ሾ௝ሿ. ∆ ࣓௕ ሾ௝ሿ ൌ െ ௕࣋ ఛሾ௝ሿ ൅ ௕࣋ ఛሾ௝ାଵሿ െ ௖௕࢘ ሾ௝ሿ. ௕࣋ ௙ሾ௝ሿ ൅ ௖௕࢘ ሾ௝ାଵሿ. ௕࣋ ௙ሾ௝ାଵሿ 

→ െࢗିࢀିࡹሶ ି ൅ࡹାࢀାࢗሶ ା ൌ ௙ఛ࣋୧୧࡮ ൅ ൤
૙
ୡ୰୤ୢ࢏

൨ 

 
Here the torque impulses. exerted on motors, are not evaluated. For a double 

contact impact, both leg pairs’ impulse vectors should be substitute as ୢ࢏ୡ୰୤. 
 
3.4 Semi-Flat Equations 
 
A system is flat or differentially flat when all the states and inputs can be found as 

functions of outputs and a limited number of their derivatives with bounded orders. 
These outputs are named “flat outputs”. It results in finding exact inputs for any desired 
outputs, which is somehow similar to output-input linearization method in nonlinear 
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control, and hence considered as a geometric approach to path planning problems [39]. 
Despite lack of generality, its advantages are in path planning by reducing the order 
and/or complexity of the optimized path planning problems as they find suitable output 
functions instead of inputs. Recently new investigations showed the sufficient 
conditions of finding such outputs for all kinds of under actuated systems, [40]; however 
its applicability and method of deriving the flat output for all kind of systems are open 
problems. Here we define a system as semi-flat if a bounded order of states’ and input 
functions’ derivatives can be found as a function of lower order inputs’ or states’ 
functions’ derivatives, outputs’ function, and a limited number of their derivatives with 
bounded orders Eq.(5) which is shown to be more general than the definition of flat 
systems. This definition results in a set of ordinary differential equations (ODE) for 
states’ and inputs’ functions which are hard to solve analytically but with an appropriate 
numerical integration method the time series of exact inputs to generate any desired 
outputs’ functions can be found which is similar to dynamic inversion methods. Here ࢞, 
࢛  and ࢟  are state, input and output vectors and α, β and γ are derivations’ order 
respectively. 

 
(5) 

 
ሾఉሿ࢞ ൌ …,࢞ሺࢇ , ,ሾఉିଵሿ࢞ ,࢛ … , ,ሾఊିଵሿ࢛ ,࢟ … ,  ሾఈሿሻ࢟
ሾఊሿ࢛ ൌ …,࢞൫࢈ , ,ሾఉିଵሿ࢞ ,࢛ … , ,ሾఊିଵሿ࢛ ,࢟ … ,  ሾఈሿ൯࢟

 
2.4. Constraints 
 
System limitations   Constraints are one of the main sources of nonlinearity in a 

system such as saturation in actuators and sensors, dead zone, clearance, etc. Here a 
simple saturation function is used to model the geometrical, kinematical and dynamical 
constraints. Besides methods of discrete integration is used whenever a signal time 
delay is encountered as in control update period. Aside joints’ rotation angle limits due 
to geometrical design, since a set of Dynamixel R-64 servo motors are considered for 
the real model, a control delay, angular velocity and torque limit of 0.01 [s],  ±6.4 [rad/s] 
and ±1.67 [Nm] are considered in modeling respectively {#625). 

 
Goal Functions (Constraints)   In semi-flat model or inverse dynamic of a system, 

goal constraints are desired values for nonlinear equalities that combine with solving 
EOM and results in finding exact input signals to steer the system to a pre-defined 
behavior. These functions can be implement as common constraint functions (Eq. (6)). 
Here ሻࢗሺࢍ	 ୢࢍ , ௧ࢍ , ୢࢀ , ୢ࢛ ,  and  ୢࢇ  (or ୢࢊ ) are goal function vector in terms of 
generalized coordinates, final and current qoal function vector value, transformation 
matrix for desired function vector in terms of generalized coordinates, desired output, 
and desired acceleration vector of reaching the goal function from its current value. 
Here we approach toward the desired values with constant acceleration of which one 
tends to reach the goal with zero state differentiate (velocity) while the other one 
approaches it in an infinitesimal time (ݏݐ or ݄) as follows.  

 
(6) 

 
ሻࢗሺࢍ ൌ ୢࢍ → ሶࢗୢࢀ ൌ ሷࢗୢࢀ →ୢ࢛ ൅ ൫ୢࢀሺࢗሻࢗሶ ൯ࢗሶ ൌ  ୢࢇ

ܽୢ ൌ െ
௨೏ሾయሿ

మ

ଶൈሺ௚ౚି௚೟ሻ
: Smooth approach toward goal with final zero velocity 
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ܽୢ 	ൌ 	2 ൈ ሺ௚ౚି௚೟ሻି௨೏ൈ௧௦

௧௦మ
: Time fixed approach toward goal 

 
3. Formulation and Path Planning 
 

Nakano defined soft landing as minimizing contact impulses in impact instance, and 
lowering contact forces as the kinetic energy rejects to settle {#245}. Here the main 
method for path planning is semi-flat dynamic, while different goal constraint are 
considered for each landing model and phase. 

 
3.1 Pre Impact Phase 
 
Newtonian Contact Equation   Here an optimal angle for the model’s front body 

inclination angle w.r.t. surface has been investigated using direct optimization. The 
limbs are open to have full range damping effect for the subsequent phases, and thigh 
and shank have 3 degrees absolute inclination each, placing the straightened legs as 
perpendicular as possible to the ground and under the body to minimize the in-joint 
harmful impulses which excreted perpendicular to limbs axis. The waist bends 84 
degrees inward to minimize these impulses too, and front body spatial angle is 
considered as the only optimization DOF. The weak axis for the shoulders is parallel 
with the front and rear body horizontal axis. In contact instance, desired joint motors 
inputs to reduce the contact leg tip relative speed to the surface is found using dynamic 
inversion considering joint and motor limits, since the Newtonian impact model predicts 
the least contact impulse if the reaching relative speeds become zero. 

Matrix form of Eq. (3) is used and after and before contact generalized coordinates’ 
differentiation and contact impulses considered as the unknowns (Eq. (7)). Model COM 
linear velocity vector is known, and the following five goal constraints are used to solve 
the inverse dynamic: 1 & 2) contact point velocity vector equals zero to reduce 
impulses and slipping probability, 3 & 4) impulse vector equivalents to the body weight 
(an impulse control feature), 5) waist joint is fixed with zero velocity and the goals would 
be achieved by actuating other four joints. The before contact states differentiations 
should not exceed joints’ rotational velocity limits and this is guaranteed by checking 
the results and fixing the joints’ before contact velocity for the not satisfactory values. 
The procedure of re-evaluating the contact equation and constraint limit check 
continues so all the inputs are found in their saturation limits. Constraining each joint 
velocity on one of its saturation boundary values, needs omitting one of the five goal 
constraints and this starts from the fifth one to the first one in the so called order. Final 
results for pre impact input signals may not satisfy none of the goal functions 
completely; however it would be the nearest possible result. Here ୣࡴ ,࢖ࢉ࢘ ,࢓ࢉ࢘୯୦ୡሾଷൈଵଷሿ, 
ୡ୫ሾଷൈଵሿ࢜
ି , g and ݄ are COM vector in pre impact model, contact point vector in post 

impact model, non-holonomic constraints coefficients matrix for free fall pre impact 
model as in [33], pre impact COM velocity vector, gravitational acceleration and primary 
COM falling height. The last five rows of the equations are the goal constraints. 

It can be seen that the dimension of ࡹ should be equals in pre and post impact 
model (which is 42 since the pre impact model is a 3D model as in [33] with 6 DOF for 
each of 7 links.) while the generalized coordinates’ vectors’ dimension can be varied. 
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(7)

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ࡹۍ
෡ ା

ሾ଼ൈ଼ሿ

ୡ୮ሾଶൈ଼ሿࢀ
ା

૙

ୡ୮ሾ଼ൈଶሿࢀ
ାሺ୘ሻ

૙
૙

෡ࡹ ି
ሾ଼ൈଵଵሿ

.ሾଶൈଶሿࡱ ୡ୮ሾଶൈଵଵሿࢀ
ି

୯୦ୡሾଷൈଵଵሿୣࡴ

૙
૙
૙
૙

૙
૙
૙

ሾଶൈଶሿࡵ

૙ሾଷൈ଼ሿ			ࡵሾଷൈଷሿ
ୡ୮ሾଶൈଵଵሿࢀ

ି

૙ሾଶൈଷሿ		1		૙ሾଶൈ଻ሿ
૙

ے	
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሾଶଵൈଶଵሿ

቎

ሶࢗ ାሾ଼ൈଵሿ
ᆑሾଶൈଵሿ
ሶࢗ ିሾଵଵൈଵሿ

቏

ሾଶଵൈଵሿ

ൌ ൥
૙
૙

ሾଵଵൈଵሿୢࢊ
൩

ሾଶଵൈଵሿ

 

ሾଵ଴ൈଵሿୢࢊ ൌ ቎
૙ሾଷൈଵሿ
ୡ୫ሾଷൈଵሿ࢜
ି

૙ሾହൈଵሿ
቏

ሾଵଵൈଵሿ

, ୡ୫ሾଷൈଵሿ࢜
ି ൌ ቎

0
0

െඥ2. g. ݄
቏ 

෡േࡹ
ሾ଼ൈ଼	௢௥	ଵଵሿ ൌ ሾ଼ൈସଶሿࢀ

ାሺ୘ሻ
଼ሿ	௢௥	ሾସଶൈଵଵࢀሾସଶൈସଶሿࡹ

േ
 

ିࢗ ൌ ሾࢋሾଵሿ ሾଶሿࢋ ሾଷሿࢋ ሾଶሿ࢝ࢗ ݐ݂ݍ ݏ݂ݍ ݐܾݍ ݏܾݍ ሾଵሿ࢓ࢉ࢘ ሾଶሿ࢓ࢉ࢘ ሾଷሿሿሺ୘ሻ࢓ࢉ࢘
ሾଵൈଵଵሿ	

ାࢗ ൌ ሾܿݍ ݐ݂ݍ ݏ݂ݍ 1ݓݍ ݐܾݍ ݏܾݍ ሾଵሿ࢖ࢉ࢘  ሾଶሿሿሺ୘ሻሾଵൈ଼ሿ࢖ࢉ࢘
 

In-joint Impulses   As in Eq. (4), the in-joint impulse matrix form is derived as in Eq. 
(8). Here all the 42 DOF of elements presents, however the only 14 linear impulsive 
force elements in 2D plane is of concern which four of them are contact point impulses, 
two of which are calculated from Eq. (8) and the other two equal zero for the free leg 
pair tip. The elements with none zero values of േ1 in ࡮୧୧ are shown with their column 
number along with their appropriate sign. Then the perpendicular and parallel impulses 
to each element at each joint (࣋௣௣) is calculated by multiplying a matrix of absolute 
rotation (calculated below) of that element (ࡾ??). Here ୢ࢏ୡ୤୤ and ୢ࢏ୡ୰୤ are front and rear leg 
pair tip impulse vectors, and ݎ subscript stands for absolute rotational angles.  

 
(8) 

 

െࡹሾଵସൈଵସሿ
ି ሾଵସൈଵଵሿࢀ

ି ሶࢗ ሾଵଵൈଵሿ
ି ൅ࡹሾଵସൈଵସሿ

ା ሾଵସൈ଼ሿࢀ
ା ሶࢗ ሾ଼ൈଵሿ

ା ൌ ሾ14ൈ1ሿ࣋୧୧ሾଵସൈଵସሿ࡮ ൅ ቎
ୡ୤୤ሾଶൈଵሿୢ࢏
૙ሾଵ଴ൈଵሿ
ୡ୰୤ሾଶൈଵሿୢ࢏

቏

ሾଵସൈଵሿ
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.  ሾଵସൈଵሿ࣋
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ሾ14ൈ1ሿ࣋ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
݂ܿy: Front	body

݂ܿx
݄݅y: Hip
݄݅z

:yݐ݂ Front	thigh

zݐ݂
:yݏ݂ Front	shank

zݏ݂
:yݐܾ Back	thigh

zݐܾ
:yݏܾ Back	shank

zݏܾ
:yݓܾ waist

zݓܾ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሾ14ൈ1ሿ

	 ,

Absolute	element	angles:
ݎ݌ܿݍ ൌ pointሻ	ሺContact	݌ܿݍ
ݎݏ݂ݍ ൌ shankሻ	ሺFront	݌ܿݍ

ݎݐ݂ݍ ൌ ݌ܿݍ ൅ thighሻ	ሺFront	ݏ݂ݍ
ݎܿݍ ൌ ݌ܿݍ ൅ ݏ݂ݍ ൅ bodyሻ	ሺFront	ݐ݂ݍ

ݎ݄ݍ ൌ ݎܿݍ ൅ ሺHipሻ	ݓݍ
ݎݐܾݍ ൌ ݎ݄ݍ ൅ ݐܾݍ ൌ thighሻ	ሺBack	ݎݓܾݍ

ݎݏܾݍ ൌ ݎݐܾݍ ൅ shankሻ	ሺBack	ݏܾݍ

 

 
Here a weighted summation of COM position divided by the mean leg pairs tips 

horizontal position as an index for static stability, contact velocity vector, and 
summation of in-joint harmful impulses are considered as the optimization criteria of 
finding appropriate front body inclination angle w.r.t. surface. 

 
3.2 Single Contact Phase 
 
Rigid Surface Model   From now one joints’ motor input torques are considered as 

the unknowns (࣎) and goal functions are used to determine the desired torque and 
joints’ instance rotational velocities (Eq. (9)). Here the five goal constraints are 1) Free 
leg thigh becomes vertical w.r.t. surface as fast as possible (in an infinitesimal time), 2) 
contact point normal force (a force control feature), 3) free leg tip altitude smooth 
contact approach (to reach the ground with zero relative velocity), 4) contact point 
horizontal force, and 5) static stability (moving COM to a horizontal position near the 
rear leg tip, which is 20% of total legs’ tip horizontal distance from the rare tip, as fast 
as possible.). Free leg pair tips’ ground reaching trajectory is considered as two of our 
goals so as to reduce the contact velocity and make it zero to reduce normal harmful 
impulse and the slipping probability on the surface. ୢࢀ  and ୢࢊ   are transformation 
matrix for goal functions in terms of generalized coordinates, and vector of other terms 
in this functions’ derivative respectively. 

 
(9) 
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. ቎
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ୡ୮ሾଶൈଵሿࣅ
ሾହൈଵሿ࣎

቏

ሾଵହൈଵሿ

ൌ ൥
୉୓୑ࢊ
૙
ୢࢊ

൩

ሾଵହൈଵሿ

 

ୡ୮ሾ௜ሿࣅሺ	ݎ݋݂ ൐ 0 ܽ݊݀ ୮ሾ୸ሿ࢞ ൌ 0ሻ, 
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Contact Model   The contact release condition is represents in Eq. (9) and after each 
re-contact, impact equations are evaluated as in Eq. (10) again to account for state 

space changes. Here double contact equations are derived while for single contact ࢀୡ୮
ሺ୘ሻ 

and ࡱ should be replaced for one of the leg pair tips only, and using one of the  ୢ࢚ࢎࡲ 
and ୢ࢚ࢎࡲ  terms (transformation matrix for front and rare leg pair tips in terms of 
generalized coordinates,) would be enough. 

 
(10)

 

൦

෡ࡹ ା
ሾ଼ൈ଼ሿ ૙ሾ଼ൈଶሿ
૙ሾଶൈଵ଴ሿ

ୡ୮ሾଵ଴ൈସሿࢀ
ሺ୘ሻ

ୡ୮ሾସൈଵ଴ሿࢀ ૙ሾସൈଶሿ

൪

ሾଵସൈଵସሿ

. ቈ
ሶࢗ ାሾଵ଴ൈଵሿ
ᆑሾସൈଵሿ
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቉
ے
ۑ
ۑ
ۑ
ې

ሾଵସൈ଼ሿ

. ሶࢗ ିሾ଼ൈଵሿ

 
Deformable Surface Model   Here the goal constraints are 1) static stability 2) 

contact point normal force, 3) free leg tip altitude smooth contact approach, 4) contact 
point horizontal force, and 5) free leg tip horizontal speed smooth approach toward zero. 
The contact force (࢙ࢌࢗ which is a term in ࢗ୬ୡ) is derived based on [30] which damping 
coefficient (ࢉ࢖࡯൫࢞౦൯) is a smooth cubic function of leg tip penetration in surface (࢞୮) 

which reaches a maximum value of ࢙࢜࡯  for ࢞୮ ൒ ࢏ࢊ . One should notice the time 
dependent parameters when differentiating contact point force functions before using it 
as the goal function which is a little confusing (Eq. (11)). Here ࢗ ,࢙ࡷ୬ୡ, ࢖ࢉ࢜ ,ࢉࢠ࢟ ,࢖ࢉ࢘ 
and ݁݅  are surface spring characteristic, external force vectors to system in contact 
points and due to in-joint springs and dampers, contact point position, first contact 
position in the surface, and velocity vectors, and exponent of the force deformation 
characteristic respectively. Goal constraints on contact force vector will force the leg tip 
to reach the surface if it detaches from the surface. 

 
(11)
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ሶࢗ ሾ଼ൈଵሿ
ୢࢊ
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ሾଶଵൈଵሿ

 

࢙ࢌࢗ ൌ െ࢙ࡷ. ൫࢞୮൯
௘௜
െ .౦൯࢞൫ࢉ࢖࡯ ൤

݌ܿݕ݀
൨݌ܿݖ݀ ݎ݋݂ ሺ࢙ࢌࢗሾ௜ሿ ൐ 0 ܽ݊݀ ୮ሾ୸ሿ࢞ ൑ 0ሻ, ୮࢞ ൌ ቂ

݌ܿݕ
ቃ݌ܿݖ െ  ࢉࢠ࢟

 
Input Signal Constraints in Inverse Dynamic   The input signals are updated with a 

delay (݄) and not instantaneously by evaluating inverse dynamic so the input signal 
delays are modeled. Since the inputs are of velocity type, the found accelerations (ݍሷሾ௜ሿ) 
are used to find input velocities (ݍሶୢ) (Eq. (12)), and If input velocities tend to exceed 
sensor (ݑ୪୧୫ሾ௜ሿ) or joint physical limits (ݍ୪୧୫ሾ௜ሿ) in time ݄, then one of the goal constraints 
will be neglected starting from the last one (No. 5) and the corresponding joint 
acceleration will be constrained to remain in a safe region. 
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(12)
ሶୢሾ௜ሿݍ ൌ ሷሾ௜ሿݍ ൈ ݄ ൅ ሶሾ௜ሿݍ → ݂݅: ൝

ሶୢሾ௜ሿݍ ൈ ݄ ൅ ሾ௜ሿݍ ൐ ୪୧୫ሾ௜ሿݍ → ሶୢሾ௜ሿݍ ൌ
୪୧୫ሾ௜ሿݍ െ ሾ௜ሿݍ

݄
ሶୢሾ௜ሿݍ ൐ ୪୧୫ሾ௜ሿݑ → ሶୢሾ௜ሿݍ ൌ ୪୧୫ሾ௜ሿݑ

	

 
 
3.2 Double Contact Phase 
Despite its name, here the model may be still in single contact, however the goal 

constraints will differ as the free leg pair tips in previous phase reaches the surface. 
They are: 1 & 2) front and rear contact point normal forces, 3 & 4) front and rear contact 
point horizontal forces, and 5) lowering COM smoothly to stop it at 0.05 m height, for 
both rigid and deformable surface models. The modeling is the same as single contact 
model, however if both legs contact the surface, new constraint and surface force 
vector on second pair should be considered. In rigid model, one DOF of the system 
reduces and it may cause singularities in simulation. So it is not possible to impose all 
five constraints due to physical or sensory limitations since one of the joints cannot be 
considered free. Here the rear shank joint considered constrained in this case. The 
input signals will try to stop the joints movements if COM velocity reaches a certain 
small value. 
 
4. Simulation and Results 
 

4.1 Pre Impact Phase 
Simulation assumptions and model parameters are as in table (1). Weights for the 

four criteria of optimizing pre landing configuration are 500, 1000 and 500 for stability 
index, after impact velocity vector of contact point, and harmful in-joint impulses 
summation. The pre configuration is 84 degrees of waist inward bending and 
maintaining േ3 degrees absolute inclination of leg limbs. It results in a 46.9 degrees 
front body inclination w.r.t. contact surface for optimum landing from a 5m free fall, and 
the model should rotates as it falls so as to reach this configuration. As a result the rear 
leg pair tips contact the ground first. However after contact velocities are equal [6.3e-1, 
-9.84] and not zero, since all five joints reach their limiting speed of [6.2, 6.2, 6.2, -6.2, 
6.2] for [qw2, qft, qfs ,qbt, qbs]. The joint between hip and rear thigh in its hip end 
encounters the highest impulse of 3.53e-1 Kg.m/s and the one between front body and 
hip in its front body end is on the second place with 3.42e-1 Kg.m/s. Contact point 
impulse vector is [2.47e-2, 3.39e-1] and it can be seen that maximum normal in-joint 
impulse is 4.1% higher than that in contact point. 

  
4.2 Single contact Phase 
In this phase it is desired to reduce normal contact force to twice the body weight for 

rigid surface, and become equal the model weight for the deformable surface model. 
These values are tuned to reach the best faceable results. Horizontal contact force is 
forced to become zero. Deformable surface model parameters in Table (1) are 
considered similar to those in [30] and [1]. As can be seen in Fig. (2 & 3), contacting 
foot bounces due to severe impact and front leg tip touches the ground while the other 
leg tip is on the fly. For the rigid and deformable surface model this phase lasts 
1.2162e-01 sec and 1.2803e-01 respectively. It is showed that landing on soft surface 
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results in less impact impulse. Fig (2 & 3) show contact points bounced rapidly in both 
models, joints moved similarly and models settled on its back foot, except for rare leg 
tip contact and front shank angles, and landing on deformable surface caused more 
rare foot bending. Input signals and generated torques for model on deformable 
surface show more fluctuation, since the surface vibration affect the system, while the 
rigid surface model generates smoother input signals. Both model joints relatively 
followed the input signals and no major saturation or physical limitations were 
encountered. 

 
In the pictures blue dotted lines are for deformable and red solid lines are for rigid 

surface model, and [ucpf, ucpr, ufs, uft, uw, ubt, ubs], [qcpf, qcpr, qfs, qft, qw, qbt, qbs], 
[Tqfs, Tqft, Tqw, Tqbt, Tqbs], [Inqfs, Inqft, Inqw, Inqbt, Inqbs], [fht, rht], [ufht, urht] and 
lambda Are rotational velocity (u…), relative angle (q…), input torque (T…), input signal 
(In…) for front leg tip, back leg tip, front shank, front thigh, waist, back thigh, and back 
shank, and leg tip velocity and position vectors (…ht & u…ht), and contact force vector 
respectively. 

 
4.3 Double contact Phase 
Here the desired forces on contact foots are 0.2 and 0.8 of body weight on front and 

rear leg respectively. The model generates inputs and once the COM velocity absolute 
value reaches 0.05 to 0.1 m/s, the stopping signal zeroes all joint velocities. The model 
is reported as settled once its COM absolute velocity and acceleration reaches values 
lower than 0.05 m/s and 0.1 m/s2 respectively. Results are shown in Fig. (4 & 5) for 
simulation results and Fig. (6) for the COM velocity and accelerations trend through 
models’ settlement. Settling duration is 0.8 for rigid surface model and 1.05 s for 
deformable surface model is. Fluctuations in input and torque signals of the model on 
deformable surface is rapid while they are smoother for the model on rigid surface. 
Both models tend to lean forward and the rare leg tip angles are decreased since the 
model front body is heavier and the least body weight should be placed on the front 
legs. The model on rigid surface rejected the linear momentum by bending front elbow 
while the other one used waist bending as the main tool for momentum rejection. As 
the rear leg runs into severe impulse in the first contact, both models’ rare legs bounce 
more than the front legs before complete settlement and front leg acted as the 
supporting leg. Flexibility of the surface caused bouncing of front leg tip while rigidity 
makes rear leg bounce more. Despite the more fluctuating nature of landing on a 
deformable surface which will cause more control and actuation effort, the landing 
normal forces in this case are considerably small and not more than 1.01 of the body 
weight while for the rigid surface model they reach two times the body weight for 
supporting leg and 10 times of it for the rear bouncing leg. It is showed that energy 
rejection through rapid contacts occurring on a rigid surface dominates the viscos 
damping effect of the deformable surface model with less impacts. However the COM 
velocity and acceleration trend for the model on deformable surface decays smoothly 
while rapid changes in these graphs (Fig. (6)) for the rigid surface model can be seen. It 
shows that a simple mistake in steering of the landing process on a rigid surface has 
considerable consequences while landing maneuver on a deformable surface would be 
less sensitive.  
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Fig. 2 Simulation results for single contact phase: blue dotted and red continues lines 

are for modeling on deformable and rigid surface respectively. 
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5. CONCLUSIONS 
 

In this research a thorough investigation is performed on modeling, path planning 
and force control planning of a cat landing maneuver on two different rigid and 
deformable surfaces, based on a distributed 7 link 2D cat robot model. A new method 
for modeling called semi-flat systems in combination with mathematical approaches to 
deal with real word application constraints is presented. The performance of the 
proposed force control and path planning is showed through numerical simulations. 
After suggesting an optimal pre landing configuration, it is showed that different surface 
models change the way a set of common goals can be achieved by a single 
mechanism. While landing on a deformable surface produces lower instantaneous 
contact forces and smoother overall settlement, it needs more control effort and 
generates more fluctuating input signals which lead to a longer settlement time. This 
research suggests a combination of TMT modeling method, semi-flat dynamics for 
trajectory and force control planning, and intelligent switching strategy for heavily 
constrained systems modeling and inverse dynamic calculations as a basis of 
investigating complicated maneuvers such as those can in nature.  

 
  

  

 
Fig. 3 Simulation results for landing single contact phase: blue dotted and red 
continues lines are for modeling on the deformable and rigid surface model 

respectively. 
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Fig. 4 Simulation results for landing double contact phase: blue dotted and red 

continues lines are for modeling on the deformable and rigid surface model 
respectively. 
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Fig. 5 Simulation results for landing single contact phase: blue dotted and red 
continues lines are for modeling on the deformable and rigid surface model 

respectively. 
 

 
Fig. 6 Simulation results for landing double contact phase: blue dotted and red 

continues lines are results for modeling on the deformable and rigid surface model 
respectively. 
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