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ABSTRACT 

The Mises yield criterion and its associated flow rule are adopted to provide a semi-
analytic solution for the distribution of residual stresses within a thin hollow disc 
inserted into a rigid container and subject to thermal loading by a uniform temperature 
field and subsequent unloading. It is assumed that there is a narrow hard layer in the 
vicinity of the hole generated by a preceding treatment of the surface. It follows from 
available experimental data that the elastic modulus and yield stress within this layer 
are much higher than the elastic modulus and yield stress of the base material. This 
paper examines the effect of this difference in the mechanical properties on the 
distribution of residual stresses. The primary objective of the paper is to provide a 
benchmark problem having a semi-analytic solution for justifying the possibility to 
neglect or the necessity to account for the presence of narrow hard layers in analysis of 
elastic-plastic discs under plane stress conditions. Numerical techniques are only 
necessary to evaluate ordinary integrals and solve an ordinary differential equation. 

1. INTRODUCTION 

“White layer” is a term referring to hard layers of material in the vicinity of surfaces 
that are generated during various machining and deformation processes (Griffiths, 
1987). The majority of white layer publications has been concerned with mechanisms of 
the generation of such layers and wear (Griffiths, 1987, Cho et al, 2012, Huang et al, 
2013 among many others). Influence of hard layers on the development of rolling 
contact fatigue has been demonstrated by Warren and Guo (2005) using a numerical 
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method and by Choi (2010) using an experimental technique. It is therefore of interest 
to understand how hard layers affect structure and component performance under 
other loading conditions. In particular, it has been found in Cho et al (2012) that the 
elastic modulus and yield stress within white layers may increase by 170% and 390%, 
respectively. It is therefore reasonable to expect that such a huge difference in the 
mechanical properties between the narrow surface layer and base material affects the
distribution of stresses and strains including residual stresses and strains in the 
structure under service conditions. Analytic and semi-analytic solutions are very useful 
to reveal this possible effect, even though such solutions by necessity involve 
simplifying assumptions. The solution given in the present paper deals with a hollow 
disc inserted into a container and subject to thermal loading and subsequent unloading.
This is an ideal boundary value problem to study various qualitative features of 
solutions for elastic/plastic discs under plane stress conditions (Alexandrov and 
Alexandrova, 2001, Alexandrov et al, 2012, Alexandrov et al, 2014a,b). The 
distinguished feature of the problem considered in the present paper is that the 
presence of a hard layer in the vicinity of the hole is taken into account.   
…
2. STATEMENT OF THE PROBLEM 

Consider a thin hollow elastic-plastic disc with inner and outer radii 0a  and 0R ,
respectively inserted into a rigid container of radius 0R  and subjected to thermal 
loading by an uniform temperature field. There is a narrow hard layer of material in the 
vicinity of the inner radius generated by a previous machining or deformation processes. 
The outer radius of this layer is 0b . The disc has no stress at the initial instant. The 
increase in temperature from its initial value, T, and the constraints imposed on the disc 
affects the zero stress state. It is natural to introduce a cylindrical coordinate system 
 , ,r z  with its z- axis coinciding with the axis of symmetry of the disc. Symmetry 
dictates that the normal stresses in this coordinate system, r ,   and z , are the 
principal stresses and the circumferential displacement vanishes everywhere. The 
radial displacement is denoted by u. It is supposed that the state of stress is plane 
( 0z  ) and the strains are small. Plastic yielding is controlled by the Mises yield 
criterion. In the case under consideration this criterion can be written as 
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Here 0  and H  are the tensile yield stresses of the base material and the hard layer, 
respectively. Both 0  and H  are material constants. The classical Duhamel-Neumann 
law is adopted. In particular, the elastic portions of the total strains are related to the 
stresses as 
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where E is Young’s modulus and  is Poisson’s ratio. It is assumed that 0E E  in the 
range 0 0b r R   and HE E  in the range 0 0a r b  . The thermal portions of the total 
strains are given by  
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r z T                                                       (3) 

where   is the thermal coefficient of linear expansion. Both  and   are independent 
of r. The total strains in plastic regions are 
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where ,p p
r   and p

z  are the plastic portions of the total strains. In the case under 
consideration, the total radial and circumferential strains are 
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The flow theory of plasticity is adopted. Therefore, the associated flow rule connects 
stresses and strain rates rather than strains. Since the strains are small, the 
components of the strain rate tensor are obtained as the local time derivatives of the 
corresponding components of the strain tensor. However, since the material model is 
rate-independent, these time derivatives can be replaced with the corresponding 
derivatives with respect to any other monotonically increasing parameter. Denote this 
parameter by p. Then, 
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The associated flow rule gives 
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where 0  . It is convenient to introduce the following dimensionless quantities 
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The only non-trivial equilibrium equation is 
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The boundary conditions are 

                                                                      0r                                                      (10) 

for a  and 0u   for 1  . It is evident from Eq. (5) that the latter is equivalent to 

                                                                      0                                                  (11) 

for 1  . In addition, the radial stress and the radial displacement must be continuous 
across the surface b  . Therefore, 

                                                          0r  and       0                                     (12) 

for b  . Here    denotes the amount of jump in the quantity in the brackets. 

3. PURELY ELASTIC SOLUTION 

The general thermo-elastic solution is well known. Using Eq.(8) this solution is 
written as 
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in the range a b   where A, B, HA and HB  are constants of integration. Substituting 
Eq.(15) into Eq.(10) and Eq.(14) into Eq.(11) yield 
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It follows from Eqs. (8), (12) - (16) that 
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Eliminating here HA  and A by means of Eqs.(17) and (18) gives 
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Solving this system for B and HB  and, then, using Eqs.(17) and (18) allow for 
determining the distribution of stress and strain by means of Eqs.(13) – (16).
Substituting Eqs.(13) and (15) into Eq.(1) shows that the purely elastic solution is valid 
if
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It is evident from these inequalities that plastic yielding may start either in the hard layer 
at a   or in the base material at b  . These conditions for the initiation of plastic 
yielding are written as 
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For a given configuration and given material properties, A, B, HA and HB  depend on  .
Solving the equations shown in Eq. (22) for   determines two critical values, b  and h .
Here b  is the solution to Eq.(22)1 and h  to Eq.(22)2. The initiation of plastic yielding 
occurs at a   if h b   and at b   if h b  . Two plastic zones start to develop 
simultaneously if h b  . 

4. ELASTIC/PLASTIC SOLUTION 

Since 0HE E  and 0H  , it is reasonable to expect that h b   if 0 0b a  is small 
enough. This assumption should be verified a posteriori. There are two elastic zones, 
a b   and 1c   , and the plastic zone cb    . Here c  is the dimensionless 
radius of the elastic/plastic boundary. The yield criterion (1) is satisfied by the following 
substitution 

                                   0 0

2 2sin , sin
3 33 3

r    
 

 

   
       

   
                            (23) 

where   is a new unknown function of p and  . Substituting Eq.(23) into Eq.(9) and 
using Eq.(8) give 
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Let b  be the value of   at b  . Solving Eq.(24) with the use of the boundary 
condition b   for b   results in 
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Let c  be the value of   at the elastic/plastic boundary. Then, it follows from Eq.(25)
that 
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The elastic portion of the strain tensor in the plastic zone is determined from Eqs.(2),
(8) and (23) as 
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Assume that bp  . Then, differentiating Eq.(27) with respect to b  yields 
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The derivative b    can be found from Eq.(25). In particular, differentiating 2

gives 
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Eliminating   in this equation by means of Eq.(25) results in 
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Substituting Eq.(30) into Eq.(28) yields 
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It is evident from Eq.(3) that the thermal portions of the total strain rates are 
independent of  . Therefore, the equation of strain rate compatibility is equivalent to 
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Substituting Eq.(23) into Eq.(7) and eliminating   between the first two equations lead 
to
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Replacing differentiating with respect to   with differentiating with respect to   in 
Eq.(32) by means of Eq.(24) and using Eq.(33) give 
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Eliminating here e
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The general solution to this linear differential equation for e p
   is

   
   

 
 
 

0

sin 6
exp 3 exp 3 ,

3sin

2 1 2 cos2
.

sin 6

c

p e b

b

k d


 



 
      



  


 

 
     

  

  
 




          (36) 

Here 0  is a constant of integration and   is a dummy variable of integration. The 
solution given by Eqs.(13) and (14) is valid in the range 1c   . However, A and B
are not determined from Eqs.(17) – (19). Nevertheless, Eq.(18) is valid. It follows from 
Eqs.(14) that 
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in the range 1c   . The radial stress must be continuous across the elastic/plastic 
boundary. The material just on the elastic side of the elastic/plastic boundary must 
satisfy the yield criterion (Hill, 1950). Therefore, the circumferential stress is also 
continuous across the elastic/plastic boundary. Using Eqs.(14) and (23) these two 
conditions are represented as 
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Here c  has been eliminated by means of Eq.(26). Solving Eq.(38) for A and B yields 
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Let e
c  be the value of e

  on the elastic side of the elastic/plastic boundary c  .
Then, it follows from Eqs.(26), (37) and (39) that 
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Let p
c  be the value of e p

    on the plastic side of the elastic/plastic boundary c  . 
It follows from Eq.(36) that 

 0 exp 3 .p
c ck                                                       (41) 

Since   must be continuous across the elastic/plastic boundary, it is evident that 
p e

c c  . Therefore, it follows from Eqs.(40) and (41) that 
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The solution given by Eqs.(15) and (16) is valid in the range 1c   . However, HA
and HB  are not determined from Eqs.(17) – (19). Nevertheless, Eq.(17) is valid. 
Therefore, it follows from Eqs.(8), (15) and (16) that 
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Substituting Eqs.(23) and (43) into Eq.(12)1 and using Eq.(8) give 
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A consequence of Eq.(12)2 is   0   at b  . Then, it follows from Eqs.(8), (36) and 
(43) that 
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Differentiating Eq.(44) with respect to b  leads to 
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Eliminating H bdB d and 0  in Eq.(45) by means of Eqs.(46) and (42) gives  
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The boundary condition to this equation is 

                                                         b c e    .                  (48) 

Here e  is the value of   at b   at the instant of the initiation of plastic yielding. 
Therefore, it follows from Eqs.(13) and (23) that 
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In this equation A and B are determined from Eqs.(17) – (19) at b  . It is evident that 
a unique value of e  in the range 0 2e    is determined from Eq.(49). Then, Eq.(47)
should be solved numerically using the boundary condition in Eq.(48). Once the 
solution to Eq.(47) has been found the distribution of stress is determined from Eq.(15) 



in the range a b  , from Eqs.(23) and (25) in the range cb     and from Eq.(13) 
in the range 1c   . The values of HA  and HB  are found as functions of b  from 
Eqs.(17) and (44). The values of A  and B  are found as functions of b  from Eq.(39) 
and the solution to Eq.(47). Thus the distribution of stress depends on   and b . The 
latter can be replaced with   by means of Eq.(18). There are two restrictions on the 
solution found. One of these restrictions can be derived from Eq.(22)2 in which HA  and 

HB  should be eliminated using the elastic/plastic solution. The right hand side of this 
equation must be less or equal to 1. The other restriction is 1c  . Using Eq.(26) this 
restriction is represented as 
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5. DESTRIBUTION OF RESIDUAL STRESSES

On release of   an elastic recovery precedes any possible reversed plastic yielding. 
The question as to whether reversed plasticity occurs depends upon the magnitude of 
  at the end of loading. The solution given in this section is restricted to this range of 
corresponding to a purely elastic recovery. In this case, the general solutions described 
by Eqs.(13) – (16) are valid for the increments of stress and strain. Therefore, 
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in the range 1b   and
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in the range a b  . In these equations, A , B , HA , and HB  are new constants 
of integration and m  is the value of   at the end of loading. The boundary conditions 
shown in Eq.(10) and (11) transform to 

           0r       (53) 

for a  and

           0       (54) 

for 1  . Combining Eqs.(51) – (54) gives 
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Equations (12) become   0r  and   0   at b  . Then, it follows from Eqs.(8), 
(51) and (52) that 
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Solving Eq.(55) and (56) for B  yields 
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Then, A  can be found from Eq.(55)1. Having A and B  it is possible to determine 
HB  from 
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Finally, HA  is found from Eq. Eq.(55)2. Substituting A , B , HA  and HB  into 
Eqs.(51) and (52) yields the distribution of r and  . Then, the distribution of 
residual stresses is found as 

, .res res
r r r                (59) 

Here r  and   are understood at the end of loading. The restrictions of the validity of 
the solution given in this section are 
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in the range 1b   and
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2 2 2 0res res res res

r r H              (61) 

in the range a b  .  

6. ILLUSTRATIVE EXAMPLE 

Assume that 1 3.9  and 1 1.7   (Cho et al, 2012). Consider a disc with 0.3a  ,
310k   and 0.3  . Equation (47) has been solved numerically. Then, the radial and 

circumferential stresses have been found as functions of   and c  using formulae 
derived in Section 4. The variation of the radial and circumferential stresses with   at 

0.31b   and several values of c  is depicted in Figs. 1 and 2, respectively. For values 
of 0.83c   (approximately) plastic yielding starts at a  . In order to illustrate the 
effect of the thickness of the hard layer on the distribution of stresses, the variation of 
the radial and circumferential stresses with   at 0.8c   and several values of b  is 
depicted in Figs. 3 and 4, respectively. It is seen from Figs. 1 to 4 that the hard layer 
has a significant effect of the radial stress in the base material and of the 
circumferential stress with the hard layer. The residual radial and circumferential 
stresses have been found using formulae derived in Section 5. The variation of the 
residual radial and circumferential stresses with   at 0.31b   and several values of c

is depicted in Figs. 5 and 6, respectively, and at 0.8c   and several values of b  in 
Figs. 7 and 8. It has been verified that the conditions shown in Eqs.(60) and (61) are 
satisfied. It is seen from Figs.5 to 8 that the hard layer has a larger effect on the 
residual circumferential stress as compared to the residual radial stress. 

7. CONCLUSIONS 

A new semi-analytical plane-stress elastic-plastic solution for a disc with a 
concentric hole inserted into a container and subject to thermal loading has been 
derived to determine the distribution of stresses at the end of loading and the 
distribution of residual stresses after unloading. The numerical treatment of the 
boundary value problem has been reduced to solving an ordinary differential equation 
and evaluating ordinary integrals. The solution is restricted to the range of material and 
process parameters corresponding to purely elastic response on the material within the 
hard layer and to purely elastic release. It is has been assumed that there is a narrow 
hard layer in the vicinity of the hole generated by a preceding treatment of the surface. 
The numerical example has been provided for the actual difference between the yield 
stress and Young modulus within the layer and base material found in Cho et al (2012).
It has been shown that the predicted distribution of the radial stress at the end of 
loading is influenced by the thickness of the hard layer whereas the distribution of the 
circumferential stress within the base material is not. On the other hand, the distribution 
of residual circumferential stress is significantly affected by the presence of the hard 
layer. These results call for a systematic study on the effect of hard (white) layers on 
the response of structures under various loading conditions. 



Fig. 1 Variation of the radial stress with   at 0.31b   and several values of c

Fig. 2 Variation of the circumferential stress with   at 0.31b   and several values of c



Fig. 3 Variation of the radial stress with   at 0.8c   and several values of b

Fig. 4 Variation of the circumferential stress with   at 0.8c   and several values of b 



Fig. 5 Variation of the residual radial stress with   at 0.31b   and several values of c

Fig. 6 Variation of the residual circumferential stress with   at 0.31b   and several 
values of c



Fig. 7 Variation of the residual radial stress with   at 0.8c   and several values of b

Fig. 8 Variation of the residual circumferential stress with   at 0.8c   and several 
values of b
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