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ABSTRACT 
 

To investigate turbulence characteristics relative to moving vehicles under cross 
wind, based on Taylor's frozen turbulence hypothesis and isotropic turbulence model, 
formulations for calculating the power spectra of wind turbulence relative to moving 
vehicles are derived from the Kaimal spectrum of longitudinal wind fluctuation. The 
results can be applied for any vehicle moving direction, and for both longitudinal and 
lateral components of wind turbulence. In addition, the turbulence correlation 
characteristics with respect to moving vehicles are analyzed. The effects of speed ratio 
of vehicle speed to mean wind speed on the wind spectra and correlation characteristics 
are investigated. Both the increases in wind power spectrum and correlation contribute 
to larger aerodynamic forces and wind-induced vehicle vibration as the increasing 
speed ratio. 

1. INTRODUCTION 
 
   As vehicle operating speed increases and mass decreases, the wind-induced traffic 
accidents due to strong crosswind have been common in the world (Diedrichs 2006; 
Gawthorpe 1994; Johnson 1996). The safety and comfort of running vehicles in strong 
crosswind conditions become one of the increasingly important factors (Baker 1991a, 
1991b, 1991c and 2013). Currently, the time histories of random wind velocity 
fluctuations at finite discrete fixed-locations are generated with prescribed spectral 
characteristics (Cai and Chen 2004; Li et al. 2005; Xu and Guo 2003). However, when 
considering the effects of fluctuating wind on vehicles, the method to cope with the wind 
field of vehicles is to approximately take the wind fluctuations at the nearest 
fixed-locations. These approximate modeling of wind fluctuations on vehicles often 
causes discontinuity and may even introduce sudden changes in the wind fluctuations. 
Cooper (1984) calculated the power spectral density (PSD), cross-correlation and 
coherence of wind fluctuations normal to a moving vehicle using von Karman spectrum 
for wind turbulence at fixed-locations. Baker (1991b, 1991c and 2013) presented a 
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comprehensive study on unsteady aerodynamic forces and dynamic response of 
vehicles in frequency, amplitude and time domains.  
   In present study, based on Taylor's frozen turbulence hypothesis (Taylor 1938) and 
isotropic turbulence model, formulations for calculating the power spectra of wind 
turbulence relative to moving vehicles are derived from the Kaimal spectrum of 
longitudinal wind fluctuation. In addition, the turbulence correlation characteristics with 
respect to moving vehicles are analyzed. The effects of speed ratio of vehicle speed to 
mean wind speed on the wind spectra and correlation characteristics are investigated. 

2. WIND POWER SPECTRA RELATIVE TO MOVING VEHICLES 
 

2.1 Kaimal spectrum of longitudinal wind fluctuation
The power spectral density (PSD) of u-component  nSu , is given as the Kaimal 

spectrum (Kaimal et al., 1972): 
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where n is the frequency in Hz; Unzn /ˆ   is the non-dimensional frequency; U is the 
mean wind velocity at the height z above the ground, *u is the shear velocity of the flow. 

The standard deviation (STD) of u-component is then given as *6uu  . 

 
2.2 Taylor's frozen turbulence hypothesis 
Based on Taylor’s frozen turbulence hypothesis, the wind fluctuations at two points 

along the mean wind speed direction are related as follows: 
 

   0,, tUxutxu  ,     0,, tUxvtxv                   (2) 
 

Taylor's hypothesis can be applied to turbulence except at large wavelengths (very 
low frequencies). The significant frequency range for ground vehicles is about 0.5 to 3.0 
Hz, thus this hypothesis can be applied to study the unsteady aerodynamics of moving 
vehicles. 
 

 2.3 Auto-correlation coefficient functions at fixed points 
   The auto-correlation coefficient function at a stationary point can be obtained from 
the Kaimal longitudinal spectrum by Fourier transformation: 
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where zUr /~   is a non-dimensional variable; and  xqpLommelS ,,2  is a special 
function with three parameters, which is the second kind of solutions of equation 

  1222  pxyqxyxyx (Gradsbteyn and Ryzbik, 2000). 



   For the convenience of subsequent calculations, Eq. (3) is numerically fitted as the 
following formulation of non-dimensional variable r~ , i.e.,    rfu

~ . 

 
       742.15/~exp281.0797.0/~exp201.0296.4/~exp467.0013.0~ rrrrf       (4) 

 
   The auto-correlation coefficient function of lateral wind fluctuation, i.e.,    rgv

~
can be obtained from the longitudinal auto-correlation coefficient function    rfu

~
under the assumption of isotropic turbulence (ESDU, 1985): 
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where Ur  .
   Substituting Eq. (4) into Eq. (5), the lateral auto-correlation coefficient function can 
be expressed as: 
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2.4 Cross-correlation coefficient functions relative to moving vehicles 

   Referring to Fig. 1, a vehicle is moving at a constant speed V along a straight line 
N-0 through the origin of the global coordinate system 0-XYZ, at an angle   to the 
X-axis. The local coordinate system N-ξηζ (origin N) is fixed on the vehicle, with the 
plane N-η-ζ is close to the surface of the vehicle. The two physical points P and P' are 
fixed on the moving vehicle, and the local coordinates of P and P' are  ,,0 and

  ,,0 , respectively. The position vectors  tr  of P and   tr  of P' in the global 
coordinate system can be found. Applying Taylor's frozen turbulence hypothesis, an 
equivalent point Pe' in the frozen turbulence field (at time t) can be found corresponding 
to the physical point P' (at time t+τ), which is a distance U away from point P' in the 
negative X-axis. The equivalent separations between points P and Pe' along the X, Y 
and Z axes in the frozen field are: 
 

  UVxe   cos                          (7a) 

   sinVye                               (7b) 

 z                                        (7c) 
 
   The expression form of the turbulence cross-correlation coefficient function relative 
to moving vehicles can be expressed as (Cooper, 1984): 
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where the superscript M represents that the vehicle motion is considered;  rf ~  and

 rg ~  are the longitudinal and lateral auto-correlation coefficient functions, respectively; 
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Fig. 1 Two points moving with the vehicle and equivalent point (Cooper, 1984) 
 

2.5 power spectra of turbulence relative to moving vehicles 
   The auto-correlation coefficient function of turbulence at the moving point P can be 
readily obtained from Eq. (8) by setting the two points are identical, i.e., 

UVxe   cos ,  sinVye  , and 0z . The power spectra of i-component (i = 

u, v) can be given as: 
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where  
for i = u, 

  2/cos ru VVUd                             (9a) 

 
for i = v, 

  2/sin rv VVd                                 (9b) 

cos222 VUVUVr                             (9c) 
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4. CONCLUSIONS 

 The power spectra and correlation coefficient functions of wind turbulence relative to 
moving vehicles were deduced based on the basis of Taylor's frozen turbulence 
hypothesis and isotropic turbulence model. The results can be applied for any vehicle 
moving direction, and for both longitudinal and lateral components of wind turbulence. 
The results showed that the moving vehicles experience higher wind energy at the 
frequency range of interest, thus leads to higher aerodynamic forces. The motion of 
vehicle resulted in reducing the time of vehicle passing by the turbulent eddies, 
corresponding to the reduction of the average size of turbulent eddies ‘seen’ from the 
moving vehicle. That suggested that the wind fluctuations and thus the aerodynamic 
forces on moving vehicles were more correlated in space. Both the increases in power 
spectrum and correlation contributed to larger aerodynamic forces and wind-induced 
vehicle vibration as the increasing speed ratio. 
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