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ABSTRACT 

Similitude theory plays an important role in the scaled bridge structure wind tunnel 
tests. The similitude between the prototype and the scaled model is achieved by 
keeping the dimensionless similitude criteria of these two systems similar. The methods 
commonly used to derive these similitude criteria could be categorized as dimensional 
analysis method, ratio of forces method and equation analysis method. This paper 
reviewed these three traditional methods and revealed their respective mechanisms of 
realizing similitude. A new deriving method, named Lie Group method, was proposed 
based on the Lie Group theory. By introducing Lie Groups and other related 
mathematical concepts, Lie Group method is able to determine kinds of symmetric 
mechanisms of Navier-Stokes equations. The scaled operations in bridge structure wind 
tunnel tests correspond to the second scaling symmetry group. Determination of 
invariants under the second scaling symmetry group was followed. It was found that the 
invariants are exactly the common similitude criteria. Considering the implicit connection 
with the fluid system in the flutter force model, a compatibility check of symmetric 
mechanisms between a structural systemand the fluid system around it was carried out. 
And the invariants of the structural system were solved. 

1. INTRODUCTION 

With the ever-growing of span length, bridge structures are becoming lighter, more 
flexible and in particular, more sensitive to wind actions. Structural vibration related to 
wind actions is thus a major concern of long span bridges. In terms of the driving 
mechanisms of wind induced vibration, there are two kinds, namely aerodynamic and 
aeroelastic vibrations(Scanlan 1978; Scanlan 1978). Both kinds of vibrations involve 
complex interactions between wind and bridge structure withdifferent interactions. 
Currently, it is still impossible to adopt a completely analytical approach to study this 
physical phenomenon. Only semi-analytical methods are available which essentially 
present empirical aspects. Although this semi-analytical way is well developed for past 
years, it is still unable to provide reasonable explanations to some wind induced 
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phenomena, especially for aeroelastic vibration(Kareem et al. 2013). With the rapid 
development of computer science, computational fluid dynamics (CFD) provides a new 
way to study the problem of bridge and wind interaction(Larsen et al. 1998; Panneer et 
al. 1998). However, considering the complex geometries of bridge girders attributed to 
the accessory components attached on the girder and the elasticity inducing 
deformation of bridge structures, the requirements of enormous computational 
resources and time make a completely numerical simulation of this interaction 
prohibitive. 

Because of the dilemmas faced by the above two approaches, physical experiments 
conducted in wind tunnel have played an important and sometimes even dominant role 
in the evaluation of wind induced vibration. Wind tunnel tests not only directly reveal the 
wind sensibility of bridge structures, but also provide required information to the 
theoretical analysis. In wind tunnel tests, scaled bridge structure models are employed 
to simulate the interactions taking place in the corresponding prototypes(Miyata et al.
1992; Diana et al. 1995). To correctly simulate interactions, it is important to make sure 
the similarity of the flow patterns between a bridge structure and the surrounding flow. In 
general, similitude theory is the guarantee to make the similitude requirements be 
satisfied, and also provides a law on predicting the prototype performance based on the 
scaled model observations. The importance of similitude theory in wind tunnel testing 
cannot be overemphasized. 

Completely founded around 1930s, the core of similitude theory consists of three 
similitude theorems, including the basic properties of two similitude phenomena, a 
derivation approach of similitude criteria, and the sufficiency condition of similitude 
phenomena. Among them, the second theorems, sometimes referred as Buckingham 
Π Theorem, is most widely adopted since it provides a practical introduction on 
conducting scaled experiments which satisfy similitude requirements(Szücs 1980). 

According to the ΠTheorem, three kinds of method for deriving similitude criteria of 
wind tunnel tests have already been proposed. These three methods are the 
dimensional analysis method, the ratio of forces method and the equation analysis 
method, respectively. All three methods originate from different aspects, but obtain the 
same similitude criteria when they are applied to determine the similitude conditions 
under which the scaled model tests are carried out. 

For a scaled bridge structure test, three similitude requirements, namely geometric 
similarity, kinematic similarity and dynamic similarity, theoretically need to be obeyed 
under the assumption of incompressible Newtonian fluid with constant temperature. 
Unfortunately, the latter two requirements are inevitably violated in wind tunnel tests due 
to the well-known scaled effects (Larose et al. 2006; Larsen et al. 2008). Therefore, wind 
tunnel tests of scaled bridge structures are impossible to achieve strict similitude and 
essentially partial similitude. In terms of the derivation of similitude criteria, the above 
three named traditional methods all provide simple procedures. However, when the 
essence of partial similitude is considered, their incompetence of strictly revealing the 
mechanism of partial similitude will be shown. Besides, the lack of connection with the 
theoretical frameworks of bridge aerodynamic and aeroelastic analysis is another 
obvious defect. Since semi-empirical force models which only involve the structural 
information are adopted in the analytical method, it seems that the bridge structures and 



the surrounding fluid are two separate systems which have no connection between each 
other, especially for bridge flutter divergence and vortex induced vibration. It is thus 
necessity to check the similitude criteria compatibility between a structure and the fluid 
around it. A deriving method applicable to both fluid field and a bridge structure is 
favorable to fulfill this check. Therefore, the main objective of this paper is to propose a 
new similitude criteria deriving approach which is able to overcome the above two 
mentioned defects of the traditional deriving methods. 

2. SIMILITUDE CRITERIA OF WIND TUNNEL TESTES 

In order to predict bridge prototype performance under wind action as reliable as 
possible, it is necessary to accurately reproduce the prototype flow patterns in the 
scaled bridge structure wind tunnel tests. According to the fluid mechanics, a total of six 
variables are required to describe a fluid field, includingpressure, density, temperature, 
and three components of velocities. There are corresponding six basic equations to 
determine the set of six variables. And these six fundamental equations are the 
continuity equation, the Navier-Stokes (NS) equations in three directions, the energy 
conservation equation and the thermo-dynamical equation of state, respectively. 

In bridge aerodynamics, air is assumed to be an incompressible Newtonian fluid with 
constant temperature. This assumption helps reduce the basic governing equations and 
the variables both from six to four. Only the continuity equation andthree NS equations, 
and the pressure and the corresponding fluid velocities are taken into account. Since the 
continuity equation is able integrated into the NS equations, only the NS equations are 
focused when equation analysis method is employed to derive the similitude criteria of 
scaled bridge structure wind tunnel tests. 

Thanks to the efforts made by the previous experts, there are four important 
dimensionless similitude criteria for scaled bridge structure wind tunnel tests. In the 
scaled model tests, to fulfill the similitude requirements, keeping all these four 
dimensionless quantities equal for both the scaled modal and the prototype is the 
demanded practice. And these four dimensionless similitude criteria are Strouhal 
number ݑܧ Euler number，ݐܵ , Froude number ݎܨ , and Reynolds number ܴ݁ ,
respectively. 

3. TRADITIONAL DERIVING METHODS 

In general, there are three kinds of traditional similitude criteria deriving methods, 
including the Dimensional Analysis Method (DAM), the Ratio of ForcesMethod(RFM) 
and the Equation Analysis Method, which are briefly introduced afterwards. 

3.1 Dimensional analysis method 
Dimensional analysis method is widely adopted in engineering and science. 

According to the facts that the dimensions on both left and right sides of physical 
equations should be equal, this method presents the related physical quantities with 
fundamental dimensions(Szücs 1980). When it is applied to wind tunnel tests, the 
improved form, Buckingham ΠTheorem, derived from the general dimensional analysis 



method, is more preferred(Brand 1957). TheΠ theorem states that the number of 
dimensionless quantities ߨ  for a physical phenomenon is equal to the difference 
between the amount of related quantities and the rank of the dimensional matrix whose 
entries are the exponents of fundamental dimensions that are used to represent the 
related physical quantities. 

For a scaled bridge model immersed in wind flow, the basically related physical 
quantities are flow density ߩ, flow speed ܷ, characteristic length ܦ, frequency ݊,
gravitational acceleration ݃ , pressure  , and dynamic viscosity ߤ . Other related 
physical variables are functions of these seven quantities and could be presented as the 
form of 

࣠ሺߩ, ܷ, ,ܦ ݊, ,ߤ ݃, ሻ ൌ 0 (1)

This equation has three fundamental dimensions, namely length ݈, time ݐ and mass 
݉. Thus the rank for the dimension matrix is 3. According to theΠ theorem, a total 
number of 7-3=4 dimensionless quantities could be derived.And Eq.1 can be 
re-expressed as 

࣠ሺߨଵ, ,ଶߨ ,ଷߨ ସሻߨ ൌ 0 (2)

where ଵߨ ൌ ܷ/ܦ݊ , ଶߨ ൌ ሻܦܷߩሺ/ߤ , ଷߨ ൌ ଶܷ/ܦ݃  and ସߨ ൌ ଶሻܷߩሺ/ . Observing the 
formulae of these four dimensionless quantities ߨሺ݅ ൌ 1, 2, 3, 4ሻ, it is easy to know that 
they are the exact dimensionless criteria, ܵݐ，ܴ݁, andݎܨ .ݑܧ

Obviously, theΠ theorem is a convenient method for deriving similitude criteria. It’s 
even applicable to the situations where physical equations are unknown. However, 
dimensionless quantities derived by this method are not always unique and meaningful. 
Furthermore, when dimensionless quantities, such as damping ratio, aeroelastic 
parameters and so on, appear in the physical phenomenon, the derived results will 
become confusing because of the possibly arbitrary combinations between these 
dimensionless quantities. 

3.2 Ratio of forces method 
If the physical laws involved in a phenomenon are already known, the ratio of forces 

method could be used to derive the dimensionless similitude criteria. By constructing 
ratios between different kinds of forces that are formulated with the basically related 
physical quantities according to the physical laws, the physically meaningful 
dimensionless criteria are obtained(Massey 2006). 

The example of scaled bridge model immersed in wind flow is adopted again, and 
the seven related physical quantities are the same as above mentioned. The physical 
laws involved in this phenomenon consist of Newton’s second law of motion, Newton’s 
law of viscosity and pressure formula. Selecting the convective inertial force as the 
reference quantity, four ratios could be calculated. 

ଵߨ ൌ
ܨ

ܨ
ൌ ,ݐܵ ଶߨ ൌ

ܨ

జܨ
ൌ ܴ݁, ଷߨ ൌ

ܨ

ܨ
ൌ ,ଶݎܨ ସߨ ൌ

ܨ

ܨ
ൌ ,ݑܧ (3)



where ,ܨ ,జܨ ,ܨ   are the convective inertial force, the viscosity force, theܨ  andܨ
gravity force, the pressure and the local inertial force, respectively. 

It is clear that the dimensionless criteria are represented as ratios of related forces in 
the law analysis method. The similitude requirements will be achieved when the above 
four ratios are kept the same for both the prototype and the scaled model. Analyzing the 
essence of this method, these ratios are an alternative form of dynamic similitude. The 
similitude criteria derived by this method are physically meaningful, but the same 
problems for arbitrary force combinations which may result in confusing dimensionless 
quantities still exist. 

3.3 Equation analysis method 
Equation analysis method is applicable to the situation where the basic governing 

equations of the physical phenomenon are obtained. By introducing some reference 
variables, the original governing equations are transformed to their dimensionless 
counterparts. The coefficients in the dimensionless equations are defined as similitude 
criteria in this method(Tanaka 2003). 

For the above example, the basic equations consist of the NS equations for the fluid 
and the equation of motion for the scaled model structure. For the reasons that only the 
dimensions of the physical quantities are considered in the dimensionless operation and 
NS equations contain all types of dimensions, it’s reasonable to only focus on the NS 
equations when the equation analysis method is used to determine the similitude criteria. 
With incompressible flow and constant viscosity, the NS equations are as follows 

ࢂ߲
ݐ߲

 ሺࢂ ڄ ࢂሻ ൌ ࢌ െ
1
ߩ

  ࢂଶ߭ (4)

To transform Eq.4 to be dimensionless, four reference physical quantities are 
introduced, namely the reference length ܮ, the reference speed ܷ, the reference press 
ܲ and the reference frequency ܰ. Substitute these references variables into Eq.4 and 
the corresponding dimensionless ones are of the forms 

ݐܵ
ࢊࢂ߲

ௗݐ߲
 ሺࢊࢂ ڄ ࢊࢂሻୢ ൌ

ࢊࢌ

ݎܨ
െ ݑܧ ڄ ୢ 

ௗ
ଶ ࢊࢂ

ܴ݁
(5)

where the subscript ‘d’ represents a dimensionless correspondence of the original 
physical quantity. It is obvious that the coefficients in Eq.5 are the similitude criteria. 

Based on the basic governing equations, the similitude criteria derived by this 
method presents clearly physical meaning. When these four coefficients are kept 
unaltered for the scaled model and the prototype, the governing equations of these two 
systems are the same. Concretely speaking, the equation analysis method provides a 
mechanism under which the scaled model and the prototype are described by the same 
governing equations, and make the dimensionless similitude criteria become 
connections between the two systems. This is a vivid explanation to the essence of 
similitude requirements provided by the equation analysis method. However, the 



success of this method mainly depends on the appropriate introduction of reference 
quantities which are purposely selected with a certain level of arbitrariness. Additionally, 
incompetence of properly dealing with dimensionless parameters also needs to be 
noticed.

4 LIE GROUPS METHOD 

As a modern mathematical concept, Lie Groups play an indispensable role in 
analyzing the continuous symmetries of mathematical objects and structures, especially 
for the differential equations(Sagle et al. 1973; Olver 2000). Being a set of complicated 
partial differential equations based on important physical phenomena, the NS equations 
are widely studied under the powerful framework of Lie Groups(Fushchych et al. 1994; 
Fushchych et al. 1994; Razafindralandy et al. 2007; Razafindralandy et al. 2007). The 
Lie Groups that describe the symmetry of NS equations are also called symmetry 
groups. In terms of symmetry of the NS equations, it could be briefly explained as 
follows(Olver 2000; Razafindralandy, Hamdouni et al. 2007). 

4.1 Symmetry of NS Equations 
Set ࢟ ൌ ሺݐ, ,࢞ ,࢛  ሻ as a set of the physical quantities in the NS equations, and

re-express the NS equations as Eq.6 for simplicity.  

࣠ሺ࢟ሻ ൌ 0 (6)

The one-parameter transformation T defined in Eq. 7 is called as a symmetry of 
Eq.6 when the condition listed in Eq.8 is satisfied. 

ఢܶ: ࢟ հ ෝ࢟ ൌ ,࢟ෝሺ࢟ ߳ሻ (7)

in which ߳ is a parameter. 

࣠ሺ࢟ሻ ൌ 0 ֞ ࣠ሺ࢟ෝሻ ൌ 0 (8)

It means that the symmetry obtains a given solution of Eq.6 to another solution. The 
set of all the symmetries of Eq.6 constitutes a one-parameter symmetry group.Under the 
symmetry group actions, the variables in Eq.6 are transformed from the original set ࢟ to 
the new set ࢟ෝ. While there are some quantities related with ࢟, they keep unaltered 
under the transformation ܶ. These quantities are defined as invariants corresponding 
to ܶ.

Every symmetry group associates with certain vector fields. The one represents the 
variation of yunder the transformation Tୟ around a ൌ 0 is called infinitesimal generator 
and has a form of 

ܺ ൌ
ෝ߲࢟
ݔ߲

ฬ
ୀ

ൌ  ߦ
߲

ݕ߲

(9)



where ߦ ൌ ./߲ܽ|ୀݕ߲ 
Finally, an equivalent form of Eq.6 could be derived according to Lie’s fundamental 

theorem.

࣠ሺ࢟ሻ ൌ 0 ֞ ܺ࣠ሺ࢟ሻ ൌ 0 (10)

4.2 Infinitesimal generators of NS Equations 
The traditional treatment of combining body forces with pressure forces makes body 

forces implicit in the NS equations. The previous researches on symmetry of the NS 
equations were subsequently lack of the information on body forces transformation 
induced by a given symmetry group. For the specific case that a symmetry analysis to 
the coupling system of fluid and gravitationally dependent structures is carried out, the 
body force, in a precise sense, the gravity force results in a significant effect. The 
symmetry groups without explicit transformations of body force are difficult used in this 
case. The fact that a vast majority of bridge aeroelastic studies focus on the 
gravitationally dependent cable supported bridges makes an addition of body force 
transformation to the previously obtained symmetry groups more necessary. To achieve 
this goal, the body forces are re-expressed as gradients of potential energy ܨ. It’s 
reasonable for this replacement when the conservative property of body forces is 
considered. After the replacement, the NS equations are of the form 

ࢂ߲
ݐ߲

 ሺࢂ ڄ ࢂሻ ൌ െܨ െ
1
ߩ

  ࢂଶ߭ (11)

Based on the above framework of Lie Groups theory, five categories, a total of nine, 
infinitesimal generators of Eq.11 could be obtained(Pukhnach 1972). 

ܺ ൌ
߲
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(12a)
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߲
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൰ (12b)
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െ ݔ
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 ݑ
߲
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െ ݑ
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, ሺ݅ ൌ 1,2, ݆  ݅ሻ (12c)
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߲

ݔ߲
 ሶߙ ሺݐሻ

߲
ݑ߲

െ ሷߙݔߩ ሺݐሻ ൬
߲

߲
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߲
ܨ߲

, ሺ݅ ൌ 1,2,3ሻ (12d)

ଵܵ ൌ ݐ2
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߲
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െ ݑ

߲
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ቇ െ 2
߲

߲

ଷ
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െ ܨ2
߲

ܨ߲
(12d)
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߲
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ଷ
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 2߭
߲
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(12e)



whereߞ and ࢻare arbitrary functions. 
Correspondingly, there are five categories of symmetry groups which represent 

different symmetric mechanisms. 

Time translation group: 

బܩ
: ሺݐ, ,ݔ ,ݑ ,ܨ ሻ հ ሺݐ  ߳, ,࢞ ,࢛ , ሻܨ (13a)

Pressure and conservative force translation group: 

బܩ
: ሺݐ, ,ݔ ,ݑ ,ܨ ሻ հ ൫ݐ, ,࢞ ,࢛ , ܨ െ ,ሻݐሺߞ߳  െ ሻ൯ݐሺߞ߳ (13b)

Rotation group: 

ೕܩ
: ሺݐ, ,ݔ ,ݑ ,ܨ ሻ հ ሺݐ, ,ܴ࢞ ,࢛ܴ ,ܨ ሻ (13c)

Generalized Galilean group: 

ܩ
: ሺݐ, ,ݔ ,ݑ ,ܨ ሻ հ

ۉ

ۈ
ۇ

,ݐ ࢞  ,ሻݐሺࢻ߳ ࢛  ሶࢻ߳ ሺݐሻ,

 െ ࢞ߩ߳ ڄ ሷࢻ ሺݐሻ െ
1
2

߳ଶࢻߩሺݐሻ ڄ ሷࢻ ሺݐሻ

ܨ െ ࢞߳ ڄ ሷࢻ ሺݐሻ െ
1
2

߳ଶࢻሺݐሻ ڄ ሷࢻ ሺݐሻ
ی

ۋ
ۊ

 (13d)

First scaling group: 

ௌభܩ
: ሺ݁ଶఢݐ, ݁ఢ࢞, ݁ିఢ࢛, ݁ିଶఢܨ, ݁ିଶఢሻ (13e)

Second scaling group: 
,ݐ௦ଶ: ሺܩ ,࢞ ,࢛ ,ܨ , ߭ሻ  ሺݐ, ݁ఢ࢞, ݁ఢ࢛, ݁ଶఢܨ, ݁ଶఢ, ݁ଶఢ߭ሻ (13f)

where߳ is a parameter and ܴ is a constant rotation matrix. 
Because of the treatment to the body forces ࢌ, these symmetry groups explicitly 

involves the transformation of body force. In other words, the symmetry groups are 
applicable to the cases containing the aeroelastic effects. Among those symmetry 
groups, the second scaling symmetry groups taking into account an action on the 
kinematic viscosity ߭ are the potential ones that are able to be associated with the 
scaled operations of wind tunnel tests. 

4.3 Invariants based on Lie Group theory 
Based on the infinitesimal generator Sଶ, the invariants under this scaling group 

action is able to be determined. According to the Lie Group theory, an invariant ζ of 
scaling group Gୱଶ is a solution of the following linear, homogeneous first order partial 
differential equation, 

ܵଶሺߞሻ ൌ
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ߞ߲
ݔ߲
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  ݑ
ߞ߲
ݑ߲

ଷ
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ߞ߲
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 2
ߞ߲
߲

 2߭
ߞ߲
߲߭

ൌ 0 (14)



Eq.14 is able to be solved by the method of characteristics. Following the procedure 
of this method, a set of equivalent ordinary differential equations are obtained. 

ݐ݀
ݐ

ൌ
࢞݀
࢞

ൌ
࢛݀
࢛

ൌ
ܨ݀
ܨ2

ൌ
݀
2

ൌ
݀߭
2߭

(15)

Solving Eq.15 and regrouping the general solutions, the invariants under the action 
ofܩ௦ଶ are determined. 

ଵܥ ൌ
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ൌ ,ݐܵ ଶܥ ൌ


ݑ

ଶ ൌ ,ݑܧ ଷܥ ൌ
ܨ
ݑ

ଶ ൌ
ݔ݃

ݑ
ଶ ൌ ,ݎܨ ସܥ ൌ

ݔݑ

߭
ൌ ܴ݁ (16)

whereܥ, ሺ݆ ൌ 1, 2, 3, 4ሻ are the integration constants, and the subscript Ԣ݅Ԣ represents 
the three directionsሺݔ, ,ݕ  ሻ. The above results show that the invariants conform to theݖ
four similitude criteria of wind tunnel tests. However, the concept of invariants 
considerably extends the mathematical and physical significance of the general 
similitude criteria. 

In terms of deriving similitude criteria, Lie Group method presents many distinct 
aspects comparing to the traditional methods. By focusing on the symmetry properties 
of differential equations, this approach provides a powerful framework to derive all the 
transformations under which the NS equations still hold. These symmetric 
transformations are represented as symmetry Lie Groups. According to the symmetric 
mechanism presented by every symmetry group, an association of the scaling 
symmetry group of the NS equations with the scaled practices in wind tunnel tests is 
naturally built. Afterwards, a further derivation is implemented to obtain the invariants 
corresponding to the scaling symmetry group. From the unaltered property under 
scaling transformations, these invariants, appeared as integration constants, exactly 
conform to the definition of similitude criteria, and their expressions confirm to this 
inference.

The confliction between Fr number and Re number similitude criteria in a scaled 
model is well known, but the rigorous proof from the mathematical aspect has seldom 
been presented. Based on the above results, this work is easily accomplished. 

GivenGୱଶ, the transformed variables are 

ෝ࢟ ൌ ൫̂ݐ, ,ෝ࢞ ,ෝ࢛ ,ܨ ,̂ ො߭൯ ൌ ሺݐ, ݁ఢ࢞, ݁ఢ࢛, ݁ଶఢܨ, ݁ଶఢ, ݁ଶఢ߭ሻ (17)

To simplify and consider the fact that gravity force is the dominant body force in the 
physically aeroelastic wind tunnel tests, take the vertical direction as an example. 

߳ 
ݓ߲
ݐ߲

 ݑ߳
ݓ߲
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 ݒ߳
ݓ߲
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 ݓ߳
ݓ߲
ݖ߲

ൌ െ߳
1
ߩ
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ݖ߲

 ߳݃  ߳߭
߲ଶݓ
ଶݖ߲

(18)

From the mathematical point of view, it’s obvious that the scaled NS equations, 
Eq.18, hold for any value of parameter ߳. However, Eq.18 corresponds to the scaled 
physical phenomenon in wind tunnel tests, and parameter ߳ is in fact the chosen scale 



factor. The fact that the gravitational acceleration ݃ is unable to be changed in most 
wind tunnel tests requires the scale factor ߳  being equal to 1. This inference is 
undoubtedly a sad requirement, since it means that only in the prototype can the ݎܨ
number and the ܴ݁ number similitude criteria be satisfied simultaneously. The above 
investigation on the transformed the NS equations reveals the main reason for 
abandoning ܴ݁ number similitude requirement in a vast majority of wind tunnel tests. 

5 FLUTTER FORCE MODEL UNDER SCALED SYMMETRY TRANSFORMATION 

As mentioned above, the semi-analytical method is widely adopted for investigating 
the aeroelastic performance of bridge structures. A majority of flutter force models 
mainly concerns the self-excited characteristic while relatively pay less attention to the 
wind aspects which are implicitly and coarsely considered through only several 
aeroelastic parameters. This indirect association makes the bridge structure and wind 
seem like two independent systems. Thus, there is a necessity to verify whether the 
scaled symmetry derived from the NS equations is compatible with the flutter force 
model.

Among several kinds of flutter force models, the one proposed by Scanlan is widely 
adopted. And the equations of motion for vertical and torsional degrees can be 
expressed as (Scanlan et al. 1971; Scanlan 1978), 

݉ ሷ݄  ߱ߦ2݉
ሶ݄  ݉߱

ଶ݄ ൌ
1
2

ܤଶܷߩ ቈܪܭଵ
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whereߩ ൌair density; ܷ ൌmean wind velocity; ܤ ൌbridge width; ܭ ൌ ܷ/ܤ߱ ൌreduced
frequency; ߱ ൌ circular frequency of motion; and ܪ

כ  and ܣ
ሺ݅כ ൌ 1,2,3,4ሻ ൌ flutter 

derivatives.
According to the scaling infinitesimal generator of NS equations expressed in Eq.12, 

the vector field corresponding to Eq. 19 could be constructed under the similar scaling 
symmetric mechanism. 
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The invariants of this vector field are assumed to be ߟ, and it could be solved from 
following equation. 
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With the similar procedures conducted in the previous section, invariants which 
guarantee the scaling symmetric mechanism derived from the NS equations compatible 
with the flutter force model are determined. 
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(22)

Clearly, the first derived invariant ܥହ is consistent with the reduced frequency. This 
result endows the routinely defined reduced frequency in bridge flutter analysis a 
mathematical explanation that the essence of reduced frequency is an invariant under 
the scaling transformation. The other two invariants represent the ratios between the 
structural masses and the corresponding equivalent air mass. These mean that only do 
the mass ratios keep consistent, can the scaling symmetry be compatible with the one of 
the NS equations. 

6 CONCLUSIONS 

This paper proposed a new method to derive the similitude criteria of scaled bridge 
wind tunnel tests. As Lie Group is a powerful tool for solving the symmetry 
transformations of the NS equations, this method is more generalized comparing to the 
traditional methods. Furthermore, the extension to the concept of invariants renders a 
mathematical explanation to the similitude criteria and makes a rigorous proof of the 
confliction between ݎܨ  Number and ܴ݁  number in a scaled model possible. The 
successful application of this method to the classical flutter force model not only verifies 
the compatibility of scaling symmetric mechanism between the fluid and the structural 
system, but also determines the invariants of the structural system. Based on the solved 
invariants, the invariant essence of the reduced frequency is revealed. Summarily, Lie 
symmetry group method removes the abstract aspects of the similitude theory but 
provides a powerful mathematical platform for deriving the similitude criteria. 
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