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ABSTRACT 
 
Soil consolidation by prefabricated vertical drains (PVDs) relies on several soil properties that 
are spatially variable such as the coefficients of permeability and volume compressibility. 
However, available design methods assume a single best estimate of the degree of consolidation 
based on “average” soil properties that are used to define an “equivalent” homogeneous soil. For 
heterogeneous soils, however, this assumption can result in desired (predicted) degree of 
consolidation that may not be reached at the required time, leading to unreliable and 
uneconomical solutions. To date, a few studies have been carried out to investigate the effects of 
spatial variability on soil consolidation and more research is immensely needed. In this paper, 
the effects of spatial variability of soil permeability and volume compressibility on 
consolidation of soft soil by PVDs are investigated stochastically by combining the local 
average subdivision (LAS) method of the random field theory and the Monte-Carlo finite-
element simulations. The results indicate that spatial variability of soil permeability and volume 
compressibility within an affected soil mass significantly affects the degree of consolidation 
achieved via PVDs and hence the amount of soil improvement. 
 
1. INTRODUCTION 
 

Construction over soft soils, which have low bearing capacity and excessive compressibility, 
often requires a pre-construction treatment of the existing soft subsoils in order to improve its 
strength and stiffness, thus, eliminating the undue risks of excessive post construction 
deformations and associated instability. Although a number of soft soil improvement techniques 
are currently available, the use of prefabricated vertical drains (PVDs) with preloading has 
become the most popular method as it is cost effective and environmentally friendly (Indraratna 
et al. 2003). Despite the fact that the theoretical design aspects of soil consolidation by PVDs 
are well established (e.g. Barron 1948; Hansbo 1981), satisfactory agreement between the 
theoretical predictions of consolidation and the actual observed values is hardly achieved, 
especially for heterogeneous soils. The degree of consolidation achieved by PVDs is greatly 
controlled by some soil properties (e.g. soil permeability and volume compressibility) that are 
highly variable from one point to another in the ground and potentially induce uncertainty in 
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their characterization. The inherent variation of soil properties with respect to spatial location is 
known as soil spatial variability and is due to the uneven soil micro fabric, complex 
characteristics of geological deposition and stress history. In order to properly acknowledge and 
quantify the soil spatial variability in geotechnical engineering analysis and design, probabilistic 
modeling techniques that treat the soil properties as random variables are more realistic. Unlike 
deterministic analyses, the probabilistic analyses explicitly take into account the variable nature 
of soil properties, based on their statistical characteristics, and thus provide more physical 
insights into the levels of risk associated with the obtained degree of consolidation. 

The formulation and solution of stochastic problems are often very complicated. The review 
of relevant literature has indicated that although the fact that the impact of spatial variability of 
soil properties on soil consolidation has long been realized by many researchers (e.g. Pyrah 
1996; Rowe 1972), it has never been previously considered in a systematic, scientific manner in 
design and little research has been made in this area. Given the complexity of the problem, a few 
studies that consider soil spatial variability in soil consolidation have been found in the literature. 
However, the existing studies either deal with the vertical drainage only (i.e. without PVDs) in 
1D and 2D geometries (e.g. Badaoui et al. 2007; Freeze 1977; Hong 1992; Huang et al. 2010; 
Hwang and Witczak 1984) or analyze soil consolidation via PVDs but only consider the 
uncertainty associated with the testing errors in measuring the soil properties while the soil 
spatial variability has not been investigated account (e.g. Hong and Shang 1998; Zhou et al. 
1999). In this paper, a parametric study that investigates the effects of soil spatial variability in 
treatment of ground improvement by PVDs is presented in a coupled Biot consolidation (Biot 
1941), where the coefficient of permeability, k, and coefficient of volume compressibility, mv, 
are separately treated as random variables. 
 
2. STOCHASTIC APPROACH OF SOIL CONSOLIDATION BY PVDs 
 
     Among several approaches to model stochastic problems, the use of deterministic finite 
element analysis with stochastic input soil parameters in a Monte Carlo framework has gained 
much popularity in recent years (Elkateb et al. 2002). Similar scheme is employed in this study 
to investigate the effects of soil spatial variability on the behavior of soil consolidation by PVDs. 
The approach merges the local average subdivision (LAS) method (to generate random 
permeability fields) and finite element modeling (to calculate soil consolidation by PVDs) into a 
Monte Carlo framework using the following steps: 

1. Create a virtual soil profile for the problem in hand which comprises a grid of elements that 
are assigned design values of soil properties different from one element to another across the 
grid. The virtual soil profile allows arbitrary distributions of soil properties to be realistically 
and economically modeled; 

2. Incorporate the generated soil profile into a finite element modeling of soil consolidation by 
PVDs; and 

3. Repeat Steps 1 and 2 many times using the Monte Carlo technique so that a series of 
consolidation responses can be obtained from which the statistical distribution parameters 
and probability of achieving a target degree of consolidation can be estimated and analyzed. 

The above steps are applied to a consolidation problem of an axisymmetric unit cell of geometry 
(see Fig. 1): L = 1.0 m, re = 0.85 m, rw = 0.05 m, where L is the maximum vertical drainage 
distance; re is the radius of equivalent soil cylinder with impermeable perimeter or the radius of 



 

zone of influence; and rw is the equivalent radius of the drain. As the detailed description of the 
above steps can be found elsewhere (Bari et al. 2012), only a brief discussion is presented below. 
 
 
 
 
 
 
  

 
 
 
 
 
 
 

Fig. 1 Schematic diagram of soil cylinder with prefabricated vertical drain 
 
2.1. Generation of Virtual Soil Profiles 
     As mentioned earlier, k and mv are considered to be random variables in the present study 
(note that to obtain accurate results, k and mv cannot be embodied into a single coefficient of 
consolidation), and are characterized in terms of their mean (µ), standard deviation (σ), 
probability distribution, and correlation length (θ). In selecting the probability distribution of k 
and mv, the authors reviewed a broad range of literature (e.g. Badaoui et al. 2007; Freeze 1977; 
Huang et al. 2010) and concludes that it is reasonable to assume lognormal probability 
distribution both for k and mv. Since the same approach is used to to generate both k and mv, 
only the procedure to generate the random soil permeability is summarized here.  
     In the process of simulating the lognormally distributed random field of k, correlated local 
averages of standard normal random field G(x) are first generated with zero mean, unit variance 
and spatial correlation function using LAS technique (Fenton and Vanmarcke 1990). The 
correlation coefficient between k measured at a point x1 and a second point x2 is specified by a 
correlation function, ρ(τ), where τ = |x1 - x2| is the absolute distance between the two points. An 
isotropic (i.e. the spatial correlation lengths in the horizontal and vertical directions are taken to 
be equal) exponentially decaying (Markovian) spatial correlation function is used in this 
research as follows (Fenton and Griffiths 2008): 
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The correlation length (also known as scale of fluctuation) given in Eq. (1), describes the limit 
of spatial continuity of spatial correlation. Thus, a large value of θk indicates a smoothly varying 
field, whereas a small value of θk implies an erratic field. It is worthy to note that spatial 
correlation length is estimated with respect to the underlying normally distributed random field. 

Horizontally 
restrained, drained 

boundary 
L

rw 

Impervious

re 

Horizontally 
restrained, 
impervious 

Vertically restrained, 
impervious boundary 

u0

z 

Soil mass 

PVD 

CL 



 

     As k is assumed to be characterized statistically by a lognormal distribution, the correlated 
standard normal random field, G(x), generated by LAS method is then transformed into a 
lognormal distribution using the following transformation function: 
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where: xi and ki are, respectively, the vector containing the coordinates of the center of the ith 
element and the soil property value assigned to that element; µlnk and σlnk are the mean and 
standard deviation of the underlying normal distribution; µlnk and σlnk are obtained from the 
specified permeability µk and σk using the following lognormal distribution transformation 
functions (Fenton and Griffiths 2008): 
 

2
lnln 2

1ln kkk σµµ −=                                                            (3) 

 

    ( )2
2

2

ln 1ln1ln k
k

k
k υ

µ
σσ +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=                                                    (4) 

 
where: υk = σk/µk is the coefficient of variation of permeability. It should be noted that the 
random fields of both k and mv are generated using the free available 2D LAS computer code 
(http://www.engmath.dal.ca/rfem/) implying that the scale of fluctuation in the circumferential 
direction is infinite (i.e. the soil properties in this direction remain constant).  
 
2.2. Finite Element Modeling Incorporating Soil Spatial Variability 

In this study, all numerical analyses are carried out under axisymmetric condition using the 
finite element computer program AFENA (Carter and Balaam 1995). Soil consolidation in 
AFENA is analyzed under Biot’s consolidation theory (Biot 1941) in which the pore fluid is 
coupled to the solid by the conditions of equilibrium and continuity. Since a single-drain 
analysis is often enough to investigate the soil consolidation behavior, the effect of soil spatial 
variability is examined using a unit cell of soil around a single drain (see Fig. 1). It should be 
noted that, although the well resistance and smear effect may affect the rate of consolidation, for 
simplicity, the smear and well resistance are not considered in the current study as they are left 
for future refinement. In order to determine optimum mesh density with minimal discretization 
error, a sensitivity analysis for the problem under consideration is carried out. Based on the 
result of the sensitivity analysis, the problem is discretized into a mesh of 16 × 20 square finite 
elements. The applied boundary conditions for the problem under consideration are shown in 
Fig. 1. In soil stabilization by PVDs, soil consolidation takes place by combined vertical and 
horizontal (radial) drainage of water. However, in practical sense, soil consolidation due to 
vertical drainage is insignificant (due to large drainage length and lower permeability in the 
vertical direction) compared to that of the horizontal drainage, thus, only soil consolidation due 
to horizontal drainage is considered in the current study. The soil skeleton is modeled as a linear 
elastic solid and the mean value of the spatially variable permeability, µk, and volume 
compressibility,

vmµ , are selected to be equal to 5×10-10 m/sec and 1.67×10-4 m2/kN, respectively. 
The effect of soil spatially variability on the stochastic behavior of soil consolidation by PVDs is 



 

investigated over a range of different combinations of standard deviation, σ, and scale of 
fluctuation, θ. For the interest of generality, σ is presented herein in a normalized form as υ (i.e. 
coefficient of variation). The following values of υ and θ are considered: 

• kυ (%) = 50, 100, 200 and 400; 
• 

vmυ (%) = 12.5, 25, 50 and 100; and 
• θ = 0.125, 0.25, 0.5, 1.0, 2.0, 4.0 (both k and mv). 

     It can be noticed that, 
vmυ is selected so as to be one quarter of kυ . This is due to the fact that 

k can possess a COV (i.e. υk) of as high as 300%, which is much higher than that of COV of mv 
(i.e. 

vmυ ) that usually ranges from 25% to 30% (Baecher and Christian 2003; Kulhawy et al. 
1991). However, the same value of θ (i.e. θk and

vmθ ) is assumed for both k and mv for simplicity. 
Since little currently known about the relationship or cross-correlation between k and mv, the 
stochastic independence between k and mv is assumed. 
     Both the excess pore water pressure and settlement can be used in determining the average 
degree of consolidation for a coupled system. Since the general trend of the statistics (mean and 
standard deviation) of the average degree of consolidation, U, estimated either on the basis of 
excess pore water pressure or settlement remains the same (see e.g. Bari et al. 2012), in this 
study U at any particular stage of analysis is calculated in terms of excess pore water pressure 
with the help of the following expression: 
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where: U(t) and ū(t) are, respectively, the average degree of consolidation and average excess 
pore water pressure at a given time t; and u0 is the initial (uniform) excess pore water pressure. It 
has to be emphasized that, ū(t) is obtained by performing numerical integration over the depth 
and width of the discretized mesh. It should also be noted that, U(t) described in Eq. (5) is the 
average degree of consolidation over the soil domain but hereafter will be simplified by 
denoting it as the degree of consolidation. This is to avoid the conflict that may occur with the 
mean (over a suite of Monte Carlo simulations) degree of consolidation, µU, that will be 
described later in Eq. (6). By invoking each parametric combination of υ and θ into the LAS 
method, the lognormally distributed random fields of k and mv at every location of the finite 
element mesh is generated using the transformation function in Eq. (2). A single generation of 
such random fields over the finite element mesh and the subsequent finite element analysis is 
termed “realization”. 
 
2.3.  Repetition of Process Based on the Monte Carlo Technique 

Following the procedures of the Monte Carlo technique, the process of generating random 
fields of soil properties of interest (i.e. k and mv) and the subsequent finite element analysis for a 
certain υ and θ is repeated 1000 times to give reasonably stable statistics for the output 
quantities of interest. The above process is performed for each set of υ and θ by which the nature 
of the generated random soil property fields (whether uniform or erratic) is regulated. Fig. 2 
shows a typical example of a discretized mesh and the corresponding soil domain represented by 
a grey scale of a typical permeability field realization in which the magnitude of permeability 



 

remains constant within each element but differs from one element to another. The lighter 
elements represent “higher” soil permeability regions, whereas the darker elements refer to 
“lower” soil permeability regions. 

 
 

Fig. 2 Typical realization of a random permeability field for υk = 100% and θk = 0.5  
(µk = 5×10-10 m/sec) 

 
     The obtained outputs from the suite of 1000 realizations of the Monte Carlo simulation are 
collated and statistically analyzed to produce estimates of the mean and standard deviation of 
the degree of consolidation. In this study, at any given time t, the mean of the degree of 
consolidation based on the excess pore water pressure, µU, is estimated by utilizing the 
geometric average (considered as the representative mean) of ū(t), as follows: 
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The standard deviation of the average degree of consolidation at any time t defined by the pore 
water pressure, σU, is estimated as follows: 
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where: nsim is the number of Monte Carlo simulations; (ū(t)/u0)i and (U(t))i are, respectively, the 
ratio of the average excess pore pressure to the initial excess pore water pressure and the degree 
of consolidation at any time t for the ith simulation (see Eq. (5)). The use of the geometric 
average of ū in computing µU is due to the fact that, in a 2D space, the flow of water is not as 
strongly dominated by the low permeability regions as in 1D space.  This is because in 2D space, 
compared to the 1D space, the flow of water has more freedom to avoid low permeability zones 
by detouring around them and therefore, the geometric average may be a better estimator for 
computing the representative mean of the average excess pore water pressures. 
3. PROBABILISTIC INTERPRETATION 

L = 1.0 m

re = 0.85 m

CL

7.84×10-9

9.8×10-9

3.93×10-9

1.97×10-9

1.1×10-11

5.88×10-9

k(
m

/s
ec

)



 

      
     The estimation of the probability that a deterministic degree of consolidation overestimates 
the true consolidation value is one of the main objectives of the stochastic consolidation 
analyses. To determine such probability for a specific stochastic simulation test, it is necessary 
to establish the probability distribution nature of the degree of consolidation data obtained from 
the suite of 1000 realizations. In order to obtain a reasonable probability distribution, the degree 
of consolidation data obtained at any time t from the suite of 1000 realizations are transformed 
to U*(t), which is used as an alternative representing form used to the degree of consolidation 
U(t). The reason for using U*(t) instead of U(t) is that the obtained fit using the raw data of U(t) 
was typically poor while a reasonable probability distribution for the obtained degree of 
consolidation data is better facilitated using U*(t), which gives sufficiently reasonable 
approximation of the degree of consolidation behavior of natural soils. U*(t) is assumed to be 
lognormally distributed and can be determined as follows: 
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Detailed description of the analytical formulations used to derive the rationality of the 
lognormal distribution hypothesis for U*(t) is beyond the scope of this paper and can be found 
elsewhere (Bari et al. 2011). The legitimacy of the lognormal distribution hypothesis for U*(t) 
is examined by the well-known Chi-square test through frequency density plot of U*(t) data 
obtained from the 1000 realizations. This process is performed for many combinations of υ and 
θ at several different consolidation times. For each of the cases considered, the goodness-of-fit 
p-value is found to be high enough to approve the rationality of the lognormal distribution 
hypothesis of simulated U*(t) data. Fig. 3 illustrates a typical example of the histogram of U*(t) 
for the case of kυ = 

vmυ = 200%, kθ  =
vmθ = 0.5 at 271.6 days, along with their fitted lognormal 

distributions. The goodness-of-fit test yielded p-value of 0.83, indicating strong agreement 
between the histogram and the fitted distribution. Therefore, the lognormal distribution is 
certainly an appropriate assumption to the distribution of the simulated U*(t) data. 
 

 
 

Fig. 3 Typical example of frequency density histogram of simulated U*(t) with fitted lognormal 
distribution for kυ = 

vmυ = 200%, kθ  =
vmθ = 0.5 at 271.6 days 
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By accepting the lognormal distribution as a reasonable fit for U*(t), the statistical moments, 
µU* and σU* that represent the mean and standard deviation of the lognormally distributed U*(t) 
are calculated for each set of υ and θ from the suite of 1000 realizations using method of 
moments. In this study, it is assumed that the target degree of consolidation is 90% and for 
convenience, it is simply denoted as U90. For 90% target degree of consolidation (U90) (i.e. when 
U(t) = 0.9), U*(t) = ln[1/(1−0.9)] = 2.3026. Therefore, the probability of getting U*(t) ≥ 2.3026 
(i.e. P[U*(t) ≥ 2.3026]) will be equal to the probability of achieving U(t) ≥ 90% (i.e. P[U(t) ≥ 
U90]) and the P[U(t) ≥ U90] can be estimated as follows: 
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where: P [.] is the probability of its argument; Φ(.) is the standard normal cumulative 
distribution function; µlnU* and σlnU* are, respectively, the mean and standard deviation of the 
underlying normally distributed lnU*(t) and can be estimated from µU* and σU* using 
transformation equations between lognormal and normal distribution (see Eqs. (3) and (4)). 
Following the procedure set out above, probabilities of achieving 90% degree of consolidation 
at any time can be estimated for any combination of υ and θ, and the stochastic behavior of soil 
consolidation by PVDs can be investigated. 
 
4. RESULTS AND DISCUSSION 
 
     In order to investigate the sensitivity of the statistics of the degree of consolidation and 
probability of achieving 90% consolidation to the statistically defined input data (i.e. υ and θ) in 
relation to both k and mv, a series of axisymmetric consolidation analyses are performed. For 
each selected set of υ and θ, 1000 Monte Carlo simulations are performed. The obtained 
consolidation responses are then statistically analyzed to estimate µU, σU and P[U ≥ U90] using 
the excess pore water pressure. Since the general trends of µU, σU and P[U ≥ U90] remain 
unaltered over the specified range of υ and θ, only the results of a few of the tests conducted are 
presented in Figs. 4-6, which are believed to be sufficient to demonstrate the main features of 
the influence of spatial variability of k and mv on soil consolidation by PVDs. In Figs. 4-6 µU, σU 
and P[U ≥ U90] are expressed as a function of the consolidation time t. Prior to put the stochastic 
analyses into context, an initial deterministic solution has been performed assuming a 
homogeneous soil. It should be noted that the deterministic solution of this case yields U90 at t = 
67.9 days (i.e. tD90 = 67.9 days).The results obtained from this study are described below. 

• Effects of  υ and θ on the mean and standard deviation of U 
     The effect of υ on µU for a constant value of θk =

vmθ = 2.0 is shown Fig. 4(a). It can be seen 
that at any particular consolidation time, µU decreases marginally with the increase of υ. At any 
certain time, a decrease in µU with the increase of υ can be explained by noting that a higher υ 
makes the heterogeneous system more erratic, so that the low k values and relatively higher 
compressible zones (as 

vmυ < kυ ) are bunched together in most of the simulations, resulting in a 
decrease in the average coefficient of consolidation. It should be noted that, this observation is 
opposite to that found for 

vmυ = kυ  case (see Bari et al. 2012) and indicates that the variational 
trend of µU (i.e. decreases or increases with the increase of υ) with respect to υ depends on the 



 

ratio of kυ to
vmυ . Fig. 4(b) shows the effect of θ on µU for a fixed value of kυ = 100% and 

vmυ = 
25%. It can be seen that at any particular consolidation time, t, there is a gradual increase in µU 
as θ increases. It is also interesting to see that for ragged random fields with a smaller θ, the µU 
curve approaches the deterministic curve. This behavior is expected, as for small θ, both k and 
mv with low and high values are distributed quite uniformly throughout the domain, implying an 
average coefficient of consolidation close to the deterministic coefficient of consolidation. As 
the random fields become smooth with higher θ, high k values and comparatively lower mv 
values tend to bunch together in most of the simulations (this is possibly because k and mv are 
uncorrelated). Consequently, there is an increase in the average coefficient of consolidation 
compared to the deterministic coefficient of consolidation and in turn the µU.  
 

(a) (b) 
 

Fig. 4 Effect of: (a) υ on µU for θ = 2.0; (b) θ on µU for υk = 100%, 
vmυ = 25% 

 

(a) (b) 
Fig. 5 Effect of: (a) υ on σU for θ = 2.0; (b) θ on σU for kυ  = 100%, 

vmυ = 25% 
 
     The influence of increasing υ and θ on σU is investigated in Fig. 5. It can be seen that σU 
increases with the increase of υ as shown in Fig. 5(a). This behavior is ‘intuitive’ due to the fact 
that the larger the value of υ, the more chance is there for a low k to come with low mv in one 
simulation and vice versa for another simulation. As a result, the potential coefficient of 

0

0.2

0.4

0.6

0.8

1

0.2 2 20 200

µ U

t (days)

D
υ1
υ2
υ3

Deterministic

%50%,200 ==
vmk υυ

%25%,100 ==
vmk υυ

%100%,400 ==
vmk υυ

θk = θmv = 2.0

0

0.2

0.4

0.6

0.8

1

0.2 2 20 200

µ U

t (days)

D
υ1
υ2
υ3

Deterministic
25.0==

vmk θθ
0.1==

vmk θθ
0.4==

vmk θθ

υk = 100%, υmv = 25%

0

0.1

0.2

0.3

0.4

0.5

0.02 0.2 2 20 200 2000

σ U

t (days)

υ1
υ2
υ3

%50%,200 ==
vmk υυ

%25%,100 ==
vmk υυ

%100%,400 ==
vmk υυ

θk = θmv = 2.0

0

0.1

0.2

0.3

0.4

0.5

0.02 0.2 2 20 200 2000

σ U

t (days)

υ1
υ2
υ3

25.0==
vmk θθ

0.1==
vmk θθ

0.4==
vmk θθ

υk = 100%, υmv = 25%



 

consolidation value will be exaggerated. The effect of θ on σU is illustrated in Fig. 5(b) for a 
constant value of kυ = 100% and 

vmυ = 25%. It can be seen that at any certain consolidation time, 
t, σU increases with the increase of θ. For large correlation length, σU is also expected to be large 
as there is less averaging variance reduction within each realization.         

• Effects of  υ and θ on the probability of achieving 90% consolidation 
     The effects of the spatial variability of k and mv on the probability of achieving 90% 
consolidation are shown in Fig. 6. The deterministic time of achieving 90% consolidation, tD90, 
is also shown in Fig. 6 by vertical solid lines to give P[U ≥ U90] at that time for any  
combination of υ and θ. 
  

(a) (b) 
 
Fig. 6 Effect of: (a) υ on P[U ≥ U90] for θ = 2.0; (b) θ on P[U ≥ U90] for kυ = 100%, 

vmυ = 25% 
 
     Fig. 6(a) illustrates the effect of varying υ on P[U ≥ U90] at a fixed value of θk =

vmθ = 2.0. It 
can be seen that, at any certain consolidation time, P[U ≥ U90] decreases with the increase of υ. 
The exception to this trend occurs before the deterministic 90% consolidation time (i.e. tD90) 
where the role of υ has the opposite effect, with lower values of υ tending to give the lowest 
values of P[U ≥ U90]. This is expected because the range of values of U* (or U) over which the 
frequency density curve is distributed increases as υ increases. In other words, U* distribution 
‘‘bunching up’’ at low υ rapidly excludes the area to the right of the stationary target value of 
U* = 2.3026. 
     The effect of θ on P[U ≥ U90] for a constant value of kυ = 100% and 

vmυ = 25% is 
investigated in Fig. 6(b). It can be seen that, initially the time rate of P[U ≥ U90] decreases as θ 
increases (e.g. θ = 1.0), then it starts to increases for large θ (e.g. θ = 4.0). This behavior can be 
explained by noting that, when θ = 0, the simulated soil profile will consist of an infinite number 
of independent ‘observations’ of which the average coefficient of consolidation is equal to the 
true mean coefficient of consolidation (or true median, if the average is a geometric average). 
Since the rate of consolidation depends also on the average coefficient of consolidation, it ‘sees’ 
the same true mean (or true median) value predicted by the soil profile. Consequently, the 
predicted mean of the degree of consolidation becomes ‘perfect’ when the correlation length is 
zero and therefore the probability of achieving a desired degree of consolidation approaches 
100%. At the other extreme of θ, when θ = ∞, the soil becomes uniform, having the same value 
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everywhere. In this case, any soil profile also perfectly predicts conditions in the unit cell. At 
intermediate θ the soil profile becomes imperfect estimator of the conditions surrounding the 
PVD, and the time rate of P[U ≥ U90] decreases. Therefore, the maximum decrease in the time 
rate of P[U ≥ U90] will occur at some correlation length between 0 and ∞. The precise value 
depends on the geometric characteristics of the problem under consideration and the COV of 
spatially variable soil properties. 
 
CONCLUSIONS 
 
     This paper has used the random field theory and finite element modeling to investigate the 
influence of soil spatial variability, over a range of values of coefficient of variation and scale of 
fluctuation, on soil stabilization by prefabricated vertical drains. Both the coefficient of 
permeability, k, and coefficient of volume compressibility, mv, were treated as independent 
random variables and Biot consolidation analysis was applied. The results obtained from the 
study led to the following findings: 

1. Increasing the input υ generally decreased the mean of the degree of consolidation. The 
standard deviation of the degree of consolidation increased with the increase of coefficient of 
variation; 

2. Increasing the scale of fluctuation generally increased the mean and standard deviation of the 
degree of consolidation. However, for large θ (e.g. θ > 1.0), the influence of θ on the mean 
and standard deviation of the degree of consolidation was marginal; and 

3. The time rate of the probability of achieving 90% consolidation decreased with the increase 
of υ, as expected. The time rate of the probability of achieving 90% consolidation initially 
decreases as θ increases (e.g. θ = 1.0), then it starts to increases for large θ (e.g. θ = 4.0). The 
probability of achieving 90% consolidation at a consolidation time corresponding to the 
deterministically predicted 90% consolidation time was found to be always be less than 50% 
over the range of the statistical parameters considered. 

Overall, the results obtained from this research highlight the significant influence of soil 
spatial variability on soil consolidation via PVDs and clearly demonstrate the benefit of 
stochastic analyses in routine design practice. 
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