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ABSTRACT 
 

Tower cranes are widely used facilities for the construction of high-rise structures. In 
operation, the crane is required to lift the payloads of up to thousand tons from the 
ground and then transport them to the appointed place via lifting, rib rotation and lifting 
cart movement along the rib. These operations will induce the rigid body motion of the 
payload as well as the deformable vibration of the crane structure. Since the motion of 
the payload and the vibration of the crane are coupled, it is thus necessary to take the 
crane-payload interaction into account for crane operational response analysis. This 
paper presented a dynamic modeling and response analysis procedure. The motions of 
the payload are idealized to be the following three patterns, the straight line motion, the 
spherical pendulum motion, and the planar pendulum motions. The equations of motion 
of the crane-payload system for those three types of payload motions are setup. 
Iterative computational algorithms based on Newmark-β method are then programmed 
to solve the equation. Numerical study on a 232-meters-high tower crane structure 
which was used for the construction of Sutong Bridge is conducted. The results are 
compared with the static analyzing results and dynamic analyzing results not consider 
the crane-payload interaction. The comparison tells that crane dynamic responses are 
far bigger than the static computed responses. However, for the studied operational 
cases of the given crane, the difference between the peak response not considering the 
interaction and the value considering the interaction is not significant.  
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1. INTRODUCTION 
 

Tower cranes are widely used equipment for the construction of high-rise civil 
engineering structures. These cranes may rise hundreds of meters into the air with a 
required reach to cover the working range. Since it is a flexible spatial lattice structure, 
its dynamic responses due to payload motion during its operation are remarkable. 
However, the generally used engineering methods for the design of tower crane 
structure do not accurately assess the dynamic effect. Recent collapse accidents of 
some tower cranes in operation address the importance of the related researches once 
more (HSE 2004). 

 
The critical problem for the operational response analysis of tower crane structure is 

to establish the equation of motion of the crane structure under operational loads. 
Studies related are generally based on some simplified crane models, such as the rigid 
body model with discrete springs (Ghigliazza 2002), a spherical pendulum and a rigid 
system model with two degrees-of-freedom (Chin 2001), or a beam model (Oguamanan 
2001). These simplifications on crane structure modeling are acceptable for the 
analyzing the pendulum motion of the payload. However, if the main concern is to 
analyze the deformation and stress response of crane structures, a more detailed 
modeling of tower crane structure is required (Ju 2006).  

 
For a crane in operation, it is ordered to lift the payloads to the appointed place via 

the lifting, rib rotation and lifting cart movement along the rib. These operations will 
induce the rigid body motion of the payload as well as the deformable vibration of the 
crane structure. The motions of the payload can then be idealized to be the following 
three patterns, the straight line motion, the spherical pendulum motion, and the planar 
pendulum motions. The equations of motion of the crane-payload system for those 
three types of payload motions are then setup. Iterative computational algorithms based 
on Newmark-β method are then programmed to solve the EOM. Numerical study on a 
232-meters-high tower crane structure which was used for the construction of Sutong 
Bridge is conducted. By solving the established equation of motion, vibration response 
of the tower crane structure can be obtained. Numerical case studies on a practically 
used tower crane structure are conducted. Some discussions will then be made based 
on the analyzing results. 

2. METHODOLOGY 

2.1. Continuum Modeling of Tower Crane 
The tower crane structure studied in this paper is a beam-like spatial lattice truss 

structure with repetitive segments (as shown in Fig.1). Following the idea of equivalent 
continuum modeling (Noor and Martin 1988), the typical repetitive lattice segment is 



isolated firstly. The stiffness and mass matrix of the equivalent continuum beam element 
are then developed according to strain energy equivalence under given deformation 
and kinetic energy equivalence under given vibration motion pattern.  

 
For a lattice segment, its displacement field is uniquely defined as a function of 

nodal displacements of the continuum beam element as 
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where wuvuuu === 321 ,,  are displacements of the original lattice segment in three 
directions; 

000 ,, iii wvu are displacements of node i of the continuum beam element in 
three direction; iii ,3,2,1 ,, φφφ are rotation of node i of the continuum beam element in three 

direction; 0
3

0
2 ,εε are longitudinal strain components in x2 and x3 direction; 0

23ε  shear 
strain in x2-x3 plane； wvu ,,  are warping and distortion components of the cross section. 
These six variables are assumed to be constant along x1. 
 

According to eq. (1), the strain components have a bilinear variation in x2-x3 plane 
and can be expressed as  

                             , 1,2,3i
ij

j

u i j
x

ε
∂

= =
∂

                           (2) 

Therefore, the axial strain of each bar components of the repetitive lattice truss structure 
can be expressed using the strain components of the continuum beam element as 
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where )(kε is the axial strain of the kth component of the repetitive lattice segment, )(k
ijε is 

the strain components in three directions of the kth components of the continuum beam 
model, )(k

il is direction cosines of the kth component. )(k
ijε is expressed using the first two 

terms of Taylor expansion. The strain energy of a typical lattice segment is expressed to 
be  
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where )(kE is the Young’s modulus of the kth bar component, )(kA is the cross section 
area of the kth bar component, )(kL is the bar length of the kth component. Substituting 
eq. (3) into eq. (4), the strain energy of the repetitive lattice segment can be expressed 
as a function of nodal displacements of the equivalent continuum beam element. Draw 
an analogy between the equivalent continuum element and the classical beam element, 

the force associated with the strain components 0
3

0
2 ,εε , 0

23ε , vu,  and w  are set equal to 

zero, which means  
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Therefore, the strain energy can be condensly expressed as： 
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Te wvuwvuu φφφφφφ= , eK is an 12x12 elemental stiffness 

matrix of the continuum beam element.  
 

Similarly, the kinetic energy of a typical lattice segment can be expressed to be  
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where )(kρ  is the Young’s modulus of the kth bar component. Substituting eq. (1) into eq. 

(7), the kinetic energy of the repetitive lattice segment can be expressed as the second 
order polynomial function of nodal velocities of the equivalent continuum beam element 
as: 
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where eM  is an 12x12 elemental mass matrix of the continuum beam element..  
 
The global stiffness and mass matrices of the lattice structure can then be 

assembled following the general finite element procedure for static and dynamic 
response analysis. The displacement and internal force of each component can then be 
computed from the solved nodal displacements of the continuum beam. 
      

2.2. Crane Payload Coupled System Modeling and Response Analysis 
During the payload lifting and rotation, the equation of motion of the mast structure 

can be established using Lagrange equation (Ju 2006). When the tower crane is lifting a 

payload of mass pm , whose motion is expressed to be )(tu p , the equation of motion of 

the tower crane structure can be expressed to be 
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where M, C, and K matrices are structural global mass, damping and stiffness 
matrices, Bu  are hanging point vertical displacements of the rib, ru are displacements at 
the remaining degrees of freedom of the tower crane.  
 



If the payload pm makes a spherical pendulum motion, which means the angle 

between the lifting cable and the vertical axis 0,  0θ θ θ θ
• ••

= = = , the motion of the payload 
can be expressed to be 00 ϕωϕ += t , where ϕ  is the rotation angle of the payload 
around the vertical axis in the plane perpendicular to the vertical axis and  0ω is the 
circular frequency expressed as pLg /0 =ω . The equation of motion of the tower 
crane structure can then be derived to be 
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The displacement response of the mast structure can thus be solved and used to 
compute internal force and stress of each bar components.  

 
If the payload pm makes a planar pendulum motion, which means 0=ϕ , the 

motion of the payload can be expressed to be )()cos( 00 tt θεωθθ += , where 0θ  is the 
initial planar pendulum motion angle of the payload to the vertical axis and )(tθε  is a 
small perturbation term. The equation of motion of the tower crane structure can then be 
derived as 
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    ( ) 0 0 0 0cos( ) cos sinP B B B BL w g w t u vθ θε ε θ ω ϕ ϕ+ + = − − −      (11-2) 

0 00 sin cosB Bu vϕ ϕ= −           (11-3) 
It can be seen from the above equations that if the payload is in the planar pendulum 
motion, the dynamic response of the crane is fully coupled with the payload motion. The 
displacement response of the mast structure can then be solved using Newmark 
method and iterative approach.  



3. CASE STUDY 

3.1. Structure description 
The tower crane structure studied herein is used for the construction of the cable 

pylons of Sutong Bridge. Figure 1 shows the layout of the cable pylon and tower crane 
system. The detailed layout of a typical lattice segment of the tower crane structure is 
shown in Figure 2. According to the design diagrams, the length, cross sectional area, 
Young’s modulus, and mass density of the bar components (longitudinal bar denoted to 
be bar l; bracing straight bar denoted to be bar b; diagonal bracing bar denoted to be 
bar d; transverse bracing bar denoted to be bar t of the crane segment are l = 5.8m, b = 
5.5m, Al = 3.14×10-2 m2, Ad = 1.5×10-2 m2, Ab = 1.5×10-2 m2, At = 0.2878×10-2 m2, El = Ed 

= Eb = Et = 2.1×1011N/m2, ρ = 7900 Kg/m3, respectively. 

 

  

Fig. 1 Cable pylon - tower crane 
system of Sutong Bridge 

Fig. 2 The detailed layout of the typical lattice 
segment of tower crane 

 
 
3.2. Crane Modeling and Eigenvalue Analysis 
According to its layout, the elemental mass and stiffness matrices of the equivalent 

continuum beam element of the lattice segment are derived (Yan 2010). To verify its 
accuracy, a numerical model with 10 continuum beam elements (CBE) is setup. As a 
reference, a numerical model composed of bar elements (BE) is setup using 
commercial software. Eigen value analysis cases are conducted on both the CBE 
model and the BE model. Figure.3 shows a mode shape comparison of the first four 
bending modes. It can be seen from the figure that the mode shapes obtained from the 
CBE model match with the global mode shapes obtained from the BE model quite well. 

 



Just some local vibrations are not caught by the CBE model. 
 

    

a) 1st  bending 
mode using CBE 
model 

b) 1st  bending 
mode using BE 
model 

c) 2nd bending 
mode using CBE 
model 

d) 2nd bending 
mode using BE 
model 

    
 
 
 
 
 
 
 
 
 

e) 3rd bending 
mode using CBE 
model 

f) 3rd bending 
mode using BE 
model 

g) 4th bending 
mode using CBE 
model 

h) 4th bending 
mode using BE 
model 

Fig. 3 Mode shape comparison between the continuum-beam-element (CBE) 
model and the bar-element (BE) model of the tower crane 

 
 

3.3. Operational Response Analysis 
Three operational cases, one payload lifting case, one payload spherical pendulum 

motion case, and on payload planar pendulum motion case, are analyzed using the 
CBE model. During the response computation, Rayleigh damping is assumed for the 
direct integration procedure. The Rayleigh damping is determined according to the 
damping ratios of the 1st and the 2nd bending mode, which are assumed to be 1% for 
steel structures.  
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(a)                                     (b) 

Fig. 4 Tip displacement responses of the tower crane during payload lifting (a) without 
and (b) with considering the crane-payload interaction 

 
 

For the payload lifting case, an 80 ton payload is lifted. At the first 0.5 second, the 
payload is lifted from the static state to the constant velocity lifting state with a velocity of 
0.5 m/s. After that, the payload moved upward in this velocity for 100 seconds. Finally, 
the payload is slowed down to the static state in one second. Figure 4 shows the tip 
displacement of the tower crane during above payload lifting process without and with 
considering the crane-payload interaction. As shown in the figure, the dynamic effect is 
quite remarkable in this process: structural maximum tip displacement without 
considering the interaction is 0.855m, which is 1.08 times of structural static 
displacements (0.787m). If the crane-payload interaction is considered, the maximum 
tip displacement is still 0.855m.  
 

   
 (a)                                  (b) 

Fig. 5 Tip displacement responses of the tower crane due to spherical pendulum motion 
of the payload (a) without and (b) with considering the crane-payload interaction 



 
For the payload spherical pendulum motion case, mP is set to be 80t, the length of 

the hanging cable LP = 40m, the angle between the hanging cable and the vertical axis 
θo = 10o. Figure 5 shows the horizontal displacement at the tip of the mast. As shown in 
the figures, spherical pendulum motion of the payload will induce harmonic vibration of 
the mast structure no matter the crane payload interaction is considered or not. If the 
interaction is not considered, the peak tip displacement is -0.8800 m. If the interaction is 
considered, the peak tip displacement is -0.8845 m, which is bigger than the value not 
considering the interaction. However, for this operational loading case, the difference is 
not big.  

    
(a)                                  (b) 

Fig. 6 Tip displacement responses of the tower crane due to planar pendulum motion of 
the payload (a) without and (b) with considering the crane-payload interaction 

 
 

For the payload planar pendulum motion case, mP is set to be 80t, LP = 40m, and 
0

0 10θ = . Figure 6 shows the tip horizontal displacement of the mast. As shown in the 

figures, the effect of interaction is more significant than the operational case of spherical 
pendulum motion of payload: The peak response not considering the interaction effect 
is -0.8503 m; the value considering the interaction effect is -0.8566 m. The figures also 
tell the component response due to the horizontal force component (the ripples shown 
at each bottom of the response time history) during the pendulum motion of the payload 
is significant. It is thus required to control the initial vibration angleθo during the 
operation of the crane.  

4. CONCLUDING REMARKS 

This paper presents a method on dynamic modeling and response analysis of 
high-rise tower crane in operation. Numerical study on a 232-meters-high tower crane 



structure which was used for the construction of Sutong Bridge is conducted. The 
results are compared with the static analyzing results and dynamic analyzing results not 
consider the crane-payload interaction. The comparison tells that crane dynamic 
responses are far bigger than the static computed responses. The dynamic modeling 
and response analysis should thus be conducted during the design stage of the crane 
structure. The results also tell that for the studied operational cases of the given crane, 
the difference between the peak response not considering the interaction and the value 
considering the interaction is not significant. A simplified uncoupled dynamic system 
modeling and analyzing procedure will present results of enough accuracy for general 
operational cases. If some special operation cases are reserved, such as heavy 
payload, big initial pendulum motion angle, or hanging cable length corresponding to 
resonant driving frequency of the crane, the coupled system modeling and analysis is 
required to be conducted. 
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