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ABSTRACT 

 
In view of increasing the performance of scanning probe microscopy (SPM) 

cantilever arrays could outperform current single cantilever systems with respect to 
scan rates. However, challenges to date are to comprehend the coupled dynamics of 
the system in close proximity to a sample surface and to developed advanced control 
schemes. To meet these challenges, we contribute a new mathematical model, 
capturing the mechanical response, thermal actuation as well as near-field force 
mechanisms. 

The theoretical work is motivated by experimental investigation of our PRONANO 
array. The governing equations of the array, derived in this work, are a set of coupled 
partial differential equations based on Euler-Bernoulli beam theory and on a Fourier’s 
heat conduction model, with an excitation model derived from Joul heating. The 
coupling between each resonator in the array is considered as a set of discrete spring 
and damping elements.  

A first analysis of the derived model is focused on the modal behavior of the 
system, which shows the coupled eigenmodes of the array as well as localized intrinsic 
modes in dependence of critical parameters like e.g. effective distances between the 
microbeams. The results are compared with a finite element model in order to validate 
the coupling and boundary conditions. 

 

1. INTRODUCTION 

Scanning probe microscopy (SPM) is a process to acquire three dimensional 
images with a sub-nanometer resolution [1-3]. The development and advances of SPM 
technology have been reported by e.g. Giessibl [1] and Wiesendanger [2, 3]. Due to the 
scan motion and the dynamics of the probe itself, the time needed to acquire an image 

is high, especially in cases of large scan areas (e.g. from 100 µm to 1 mm). Among 
others, arrays promise an innovative solution to this challenge by using parallelized 
probes which operated over a certain area of the sample surface simultaneously. Thus, 
each resonator has a comparably small area to scan, which significantly shortens the 
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The members of the array are mechanically coupled via a common base of the 
thickness ��  and the corresponding length ��  (see Fig. 2b). The distances between 
neighboring members are ����∓ with � � 1. . �, wherein � is the number of microbeams 
in the array. The subscript ∓ represents either the foregone or the next microbeam in 
the array. Thus, ����� is the distance between the microbeam � 
 1 and � and ����� the 
distance between beam � and � � 1. Note that the first and last resonators in the array 
are coupled to a neighboring member on one side and to a fixed structure on the other 
to allow for equal behavior across the entire system. Definitions and values of the 
parameters can be found in Appendix A. 

 

2.2. Multi-Physics Continuum Model 

We consider the structurally coupled array of � microbeams as depicted in Fig. 2. 
The governing equations of motion of the �-th resonator are derived using Newton’s 
and Hamilton’s principles and is based on the thermoelastic constitutive equation [24], 
considering the composite structure of the beam, which leads to: 

��
�
���� � ������, ���,
�� 
 �������� ���������
, ���, ����
, ����
,
� , ���,
� , ����
,
������������ 
�
�
 ��� � �������� 
 �������,
, 
̃�, 

(3)

with the displacement in �  direction ���  and the temperature difference ��� � �� 
 �� , 
wherein �� is the temperature and �� is the initial temperature of the system. Partial 
derivatives with respect to time or space are also denoted by � �,
� and � �,��. 

The mechanical boundary conditions of (3) are 

����0, 
̃� � 0, �
��������0, 
̃� � 0, 

 �	�"�, 
̃� � 0, �
���� ��"�, 
̃� � 0,  

(4)

and represent the most ideal case, which for a single cantilever has provided 
quantitative results [20, 25]. However, in view of predicting the behavior of the coupled 
array, these conditions may or may not be true. Thus, this work lays the emphasis on 
careful investigations of observed coupling phenomena to derive and to validate a 
realistic set of boundary conditions. 

The momentum about the #-axis in (4) is 
 � � 
�$̅�	&�̅� 
 '�̅�� � (�
$̅�

��
�������� � �$ )*****�'�̅� 
 $+ �'�)*****��

(�

$̅� �
�
�	. (5)

Coefficients denoted by a bar � �***** represent the sum of this quantity over the different 
layers across the beam thickness. Definitions and values of all coefficients can be 
found in Table 1 in Appendix A. $�, '��, &��, (
� and )� are the area of cross-section, 
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���� � ����� 
 �����,���� 
 ��� � ����� 
 �����,���� 
 ���, (9)

where ,� � is a Dirac function, ���∓ are the spring forces acting between the �� 
 1�-th 
and �-th and between the �-th and the �� � 1�-th beam: 

���� � ���� 
 ����
�-̃��,					���� � �����
 
����-̃��. (10)

The forces corresponding to the damping elements are: 

���� � ��
̃ ���� 
 ����
�.��, ���� � ��
̃ �����
 
 ����.��. (11)

The stiffness and damping coefficient of the base are -̃�∓ and .�∓. Note that the inter-
atomic forces acting between each microbeam’s tip and the sample surface ��������� in 
(3) are neglected in this case. 

Considering the thermal term in (3), the heat flux of the �-th element can be 
express by 

��������� � /
$*****�
-�0$******

� � ��(�
$)****�� $̅�
��
���� �

�
� , (12)

where /
� is the thermal conductivity and -�� the specific heat capacity. The coupling 
and excitation term ��������,
� , 
̃� consists of the heat generation due to a mechanical 
deformation and the internal heat generation by means of Joul heating within the 
aluminum microactuator 

��������,
� , 
̃� � ��(�
�'�̅�$	)
*****

�$̅� 
 '�)*****��
-�0$******

� � ��(�
$)****��$̅
��
�����
 ���

� $̅�
-�0$******

� � ��(�
$)****��$̅ 1��
̃�. 
(13)

The internal heat generation 1��
̃� in (13) is given by the heat dissipated within the 
aluminum layer due to resistive heating with respect to the volume of the meander 
shape aluminum layer, with 

1��
̃� � 0����1 � )���
�
��

$��� &��
̃��. (14)

In (14) 0��� is the resistivity, )�� the temperature coefficient and $�� the cross-sectional 
area of the aluminum layer. The excitation signal &��
̃� consisting of the static direct 
current 2��� and the alternating current 2��� can be described as 

&��
̃� � 2��� � 2��� 	sinΩ�
̃ , (15)

where Ω�is the excitation frequency. 
Introducing the following set of nondimensional variables 

�� � ���"� , �� �
���
7� , 
 � 8�
̃, �� �

���
�� , 

(16)

with the elastic frequency 8�� � �&�̅�$̅� 
 '�̅�� �(�
 �"��9�$̅��⁄ 	, Eq. (3) is rewritten as 



  

��
�
��� � 
2<���

�
�
 �� 


��
������ � = �


��
���� ��� = ������
 
 2�� ����
�,�� 
 ��/"��

� = �� ��
 ����
 
 2�� � ���
�,�� 
 ��/"��, 

�
�
 �� � =!�


��
���� �� 
 =!��&�

��� 
 =!�� ��
�����
 �� � =!��&�

�. 

(17)

<��� in (17) is the damping ratio of a microbeam. The dimensionless coefficients = �
 to = �" of the mechanical system and the coefficients =!�
 to =!�� of the thermal system 
can be found in Table 2 and Table 3 in Appendix A. The corresponding nondimensional 
boundary conditions of (17) are: 

���0, 
� � 0, �
��� ���0, 
� � 0, 


= �# �
�

�������1, 
� � = �"���1, 
� � 0 

= �#"�

��
�������1, 
� �

= �"
"�

�
��� ���1, 
� � 0 

���0, 
� � 0, �
��� ���1, 
� � 0. 

(18)

 
 

2.3. Modal Dynamic Array 

To analyze the dynamic response of the array, the solution of the governing 
equations (17) can be approximated in terms of a linear combination of a finite number 
of orthonormal spatial basis functions with time dependent amplitudes, which yields: 

�����, 
� � ?@ �$����A �$ �
�,
%

$&


 

�����, 
� � ?@!�$����A!�$ �
�
%

$&


, 
(19)

wherein @ �$  and @!�$  are the mechanical and thermal spatial shape functions and A �$  and A!�$  are the time varying amplitudes, corresponding to the / -th mode of 
oscillation;  B is the number of modes consider in the modal decomposition. The shape 
functions, which satisfy the boundary conditions exactly [27] are determined by solving 

the eigenvalue problem of a single beam with a springs attached at a distance �� from 
the clamped end. 

Introducing ansatz (19) into (17) and applying the general procedure for a modal 

analysis by multiplying the resulting mechanical equations with ϕ'�( and the 



  

corresponding thermal equations with ϕ)�( as well as integrate with respect to x� 
yields: 

E �
FG � � 
2�<���	E �
 � = ��HI �� �AJ � 
 �E �� � 2= ��HI �� �A �
� = �
E ��F!� �H �H ��
� �= ��FJ ��
 � = ��F ��
�� H �H ��
� �= ��FJ ��
 � = ��F ��
� 

E!�
FJ !� � �=!�
E!�� 
 =!��&��E!�
�A!� 
 =!��E!��FJ � � =!��&��E!�� 
 

(20)

with HI � � H ����/"��. Note that dot � �J  and prime � �* denote ordinary derivatives 
with respect to the nondimensional time 
 and coordinate �� along the beams length. 
The matrices K �
 to K �� and K!�
 to K!�� contain the inner product of the mechanical 
and thermal eigenfunctions (see Appendix A, Table 4). 

Introducing the following state vector 

L � MF 
� ⋯ F �� ⋯ F +� FJ 
� ⋯ FJ �� ⋯ FJ +� O�, (21)

and assuming that A � � 0, A , � 0; AJ � � 0 and AJ , � 0, (20) can be written in state 
space to: 

LJ � PQ- R,S, T,U L � V��, (22)

with Q� and R� being a zero matrix and an identity matrix, respectively.The stiffness and 
damping matrix S, and T, can be found in the Appendix A, Table 5. 
Note that in case of (22) the bidirectional coupling of the thermal and mechanical 
system of a single element is neglected. Thus, the systems excitation is: 

V�� � = �E ��F! (23)

where the vector F! consists of the time dependent amplitudes of each beam A!�$. 
3. ANALYSIS 

The analysis carried out within the following sections is divided into two parts: The 
analysis of the analytical model with the corresponding eigenvalue problem and a 
modal analysis of a finite element (FE) model. Conclusively, both models are compared 
in view of a qualitative agreement and to evaluate the limits of the analytical array 
model. 

3.1 Analysis of Eigenvalue Problem 

The eigenvalue problem of the governing equation of motion (20) is analyzed in 
view of eigenfrequencies and coupled modes of the 4 element array and the 
dependency of these properties on the geometry of the common base. In case of the 
analytical model, the nondimensional coefficients = ��  and = �� , are the equivalent 
coefficients to the base geometry and correspond to a stiffness and damping coefficient 

of the coupling element. Additionally, the position of the coupling elements �� along the 
beam’s ��  axis can be varied. The coupled modes of the array are denoted in the 
following manner (Fig. 4): 
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stiffness -�, the first and second intrinsic modes occur at the same frequency. This is 
due to the location of the coupling element, which is located near the node of the 
second eigenfrequency. In case of small W , an increasing stiffness -�  leads to an 
increasing difference between the 1st and 2nd intrinsic mode of each microbeam. 

The first assembly mode for �� � 0.2 and -� �	10. is depicted in Fig. 6. As can be 
seen, two pairs of members are forming between the 1st and 4th element as well as 
between the 2nd and 3rd element. These different amplitudes of oscillation result from 
the different boundary condition in the #� coordinate. The outer beams are connected 
to only one neighboring element and to a fixed support, whereas the beams in the 
middle of the array connected with 2 neighboring elements. 

Figure 6: Left: 4
th
 and 2

nd
 coupled mode of the array; �� � 10

�, �� � 0.2 . Right: Decoupled mode for  
	 → 0 or �� → 0 or �� → ∞. 

 

3.2 Modal Analysis Finite Element Model 

The modal analysis of a finite element (FE) array model is done using ANSYS 
Workbench v14. The geometry of each single microbeam is similar to the parameters 
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APPENDIX A 

 

 
Table 1: Weighted material parameters and moments of area 
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Table 2: Coefficients of the mechanical system 
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Table 3: Coefficients of the thermal system 
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Table 4: Matrices of the inner product of the mechanical and thermal eigenfunctions 
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Table 5: Nondimensional stiffness and damping matrices and coefficients 
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Table 6 Parameters 

 

  

Parameter Unit Symbol Value

Hieght Layer 1 µm hi 3

Layer 2 0.6

Layer 3 1

Length Section 1 µm lj 203

Section 2 77

Section 3 40

Width µm B 111

Tip Radii nm Rt 20

Tip hieght µm hT 10

Tip to beam end distance µm lT 10

Length piezoresistive element µm lPE 28

Width piezoresistive element µm bPE 6

Position piesoresistive sensor (midelle) µm lPS 10

Heater length mm lh 1.18

Heater width Section 1 µm bHj 3

Section 2 4.5

Distance between each cantilever µm dCLnm 60

Length of base (clamp) µm lB

Hight of base (clamp) µm hB

Young's modulus Layer 1 GNm2
Ei 170

Layer 2 74

Layer 3 70

Density Layer 1 kgm-3
ρ i 2300

Layer 2 2210

Layer 3 2694

Possion's ratio Layer 1 1 νi 0.22

Layer 2 0.17

Layer 3 0.35

Coefficient of linear thermal expansion Layer 1 10-6 K-1
αTi 2.616 

Layer 2 0.54

Layer 3 23.3

Thermal conductivity Layer 1 W (m K)-1 kt 156

Layer 2 1.4

Layer 3 237

Specific heat capacity Layer 1 J (kg K)-1 cv 713

Layer 2 705

Layer 3 753

Quality Factor 1 Q 516.13

Resistivity (layer 3 aluminum)  10
−8

Ω m ρe 2.857

Heater resistance Ω Rh 24

Sensor resistance Ω Rs 1090

Hamaker constant repulsive 10-70J m6
H1 1.3596

attractive 10-19J H2 1.865 
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