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ABSTRACT

In view of increasing the performance of scanning probe microscopy (SPM)
cantilever arrays could outperform current single cantilever systems with respect to
scan rates. However, challenges to date are to comprehend the coupled dynamics of
the system in close proximity to a sample surface and to developed advanced control
schemes. To meet these challenges, we contribute a new mathematical model,
capturing the mechanical response, thermal actuation as well as near-field force
mechanisms.

The theoretical work is motivated by experimental investigation of our PRONANO
array. The governing equations of the array, derived in this work, are a set of coupled
partial differential equations based on Euler-Bernoulli beam theory and on a Fourier's
heat conduction model, with an excitation model derived from Joul heating. The
coupling between each resonator in the array is considered as a set of discrete spring
and damping elements.

A first analysis of the derived model is focused on the modal behavior of the
system, which shows the coupled eigenmodes of the array as well as localized intrinsic
modes in dependence of critical parameters like e.g. effective distances between the
microbeams. The results are compared with a finite element model in order to validate
the coupling and boundary conditions.

1. INTRODUCTION

Scanning probe microscopy (SPM) is a process to acquire three dimensional
images with a sub-nanometer resolution [1-3]. The development and advances of SPM
technology have been reported by e.g. Giessibl [1] and Wiesendanger [2, 3] Due to the
scan motion and the dynamics of the probe itself, the time needed to acquire an image
is high, especially in cases of large scan areas (e.g. from 100 um to 1 mm). Among
others, arrays promise an innovative solution to this challenge by using parallelized
probes which operated over a certain area of the sample surface simultaneously. Thus,
each resonator has a comparably small area to scan, which significantly shortens the
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overall scan process [4]. Furthermore, this technology also opens the possibility to
simultaneously image and manipulate the sample. Despite obvious advantages of
arrays in SPM application, the technology yields the need for integrated actuation and
displacement sensing for each element of the array. Further miniaturization and a
decreasing of distance between single resonators of an array are also desirable. This
implies a more complex system, consisting of multiple coupled physical fields (e.g.
depending on the principle of actuation; thermo-mechanical, electrostatic-mechanical
etc.) as well as an elastic coupling between the resonators. The control effort to
achieve high scan rates with a high spatial resolution increases due to the need to
control each resonator individually. In order to understand the overall behavior as well
as to develop new control schemes to meet increasing demands on precision and
performance, a mathematical model is indispensable. In this work an analytical, multi-
physics model of the PRONANO array [5] is derived to set the basis for a systematic
nonlinear dynamics analysis (see Fig. 1).
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Figure 1: Photograph of the coupled microbeam PRONANO array with meander shape actuator and
piezoresistive sensor, located close to the common base [6]

1.1. Thermally actuated micro-cantilevers

A single, thermal actuated microbeam (as well as the whole array) is based on
CMOS fabrication technology [7]. The micro-cantilever is a Silicon (Si) beam with
integrated piezoresistive readout and thermal actuation and its motion is generated by
means of the bi-morph effect. A cross-sectional profile reveals three layers, namely,
silicon on insulator, silicon dioxide and an aluminum layer, forming the meander shaped
microheater. The piezoresistive sensor is formed within the oxide layer by boron
implantation. In view of the beam’s composite structure, the corresponding bi-morph
effect, as well as of the different cross-sectional areas along the cantilever’s length, a
multi-regional continuum mechanics approach is chosen to model the single resonator.
A detailed derivation of governing equations of the single cantilever is available in
Sattel et al. [8]. In this paper, we expand this model to the formulation of a one
dimensional array with an arbitrary number of members. A first analysis concentrates
on a small-size array (of 4 resonators) and developing realistic boundary conditions and
coupling mechanisms for the array.
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2. ANALYTICAL MODEL

The derivation of array models, capable of explaining highly non-linear effects [9-
13], has shown to be a challenging task, due to the amount of coupled fields, often
nonlinear behavior and different scientific domains involved [14-18]. To date, most
theoretical approaches for multi-physics structures include only two coupled fields, e.g.
electro-mechanical [19-21], thermo-mechanical [22] or piezoelectric-mechanical
interactions [23]. In this work we propose a model that includes all actuation, interaction
and sensing mechanisms, which concludes in a total of four coupled fields, which are
thermal, piezoresistive, mechanical and near-field probe-sample interactions.

2.1. Design and Notation

The array model presented in this work is based on our derivations of the single
microbeam model [8] and accounts for the spatio-temporal behavior of the mechanical
structure coupled with the thermal actuation mechanism as well as near field probe-
sample interactions. Note, that the thermal actuation in our previous work has been
modeled by means of a thermal moment, which in this work is replaced by considering
the multi-layered profile of the composite structure. Detailed derivations concerning the
kinematics and dynamics that yield the actuation model will be published elsewhere.
Schematic sketches of the n-th microbeam and the array are depicted in Fig. 2. The
coordinate system is located at the clamped end of each microbeam, where

B B H H

0<% SLy——5 < <=~ <z, < (1)

The dimensions of the cantilever are the length L,,, the width B, and the height
H, = Y3_, h;, respectively (variables denoted with a tilde are going to be made non-
dimensional below.) The microbeam is a composite structure consisting of three layers,
denoted throughout the article with the subscript i, that are: Silicon (i = 1), silicon
dioxide (i = 2) and aluminum (i = 3). As can be seen in Fig. 2, each beam has a
varying cross-sectional area along its length, due to the meander shape of the
aluminum layer. These different sections are denoted by subscript ;.
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Figure 2: a) Schematic sketch of a single microbeam; b) Microbeam array
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The members of the array are mechanically coupled via a common base of the
thickness hz and the corresponding length [, (see Fig. 2b). The distances between
neighboring members are B, with n = 1.. N, wherein N is the number of microbeams
in the array. The subscript + represents either the foregone or the next microbeam in
the array. Thus, B,,;,_ is the distance between the microbeam n — 1 and n and B,,;,,; the
distance between beam n and n + 1. Note that the first and last resonators in the array
are coupled to a neighboring member on one side and to a fixed structure on the other
to allow for equal behavior across the entire system. Definitions and values of the
parameters can be found in Appendix A.

2.2. Multi-Physics Continuum Model

We consider the structurally coupled array of N microbeams as depicted in Fig. 2.
The governing equations of motion of the n-th resonator are derived using Newton’s
and Hamilton’s principles and is based on the thermoelastic constitutive equation [24],
considering the composite structure of the beam, which leads to:
2

5 Wy = Qn(0n, Wz) — Ry (W)

Jt
+ Fean (Wn—l' Wn, Wri1, Wn—l,f' Wn,f' Wn+1,f)+FTSn (Wn) (3)

Jd - ~ ~
Egn = QHF(gn) - QCE(Wn,tI t)r

with the displacement in z direction W, and the temperature difference 8,, = T, — T,,,
wherein T, is the temperature and T, is the initial temperature of the system. Partial
derivatives with respect to time or space are also denoted by ( )z and ().

The mechanical boundary conditions of (3) are

. 9] .
Wn(O, t) == 0, ﬁwn(o, t) == 0,
" (4)
. 0 N
M, (Lnf t) =0, EMn(Ln; t) =0,
n

and represent the most ideal case, which for a single cantilever has provided
quantitative results [20, 25]. However, in view of predicting the behavior of the coupled
array, these conditions may or may not be true. Thus, this work lays the emphasis on
careful investigations of observed coupling phenomena to derive and to validate a
realistic set of boundary conditions.
The momentum about the y-axis in (4) is
_ _ E, 07 - - - — E, -

My, = —(An Ly — $2,) A_L:ﬁwn + (AapSyn — A xS, ) A_Lnl g, . ()
Coefficients denoted by a bar () represent the sum of this quantity over the different
layers across the beam thickness. Definitions and values of all coefficients can be
found in Table 1 in Appendix A. A, Sy, In, E1, and a, are the area of cross-section,
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the first and second moment of area, the Young’s modulus of silicon and the coefficient
of thermal expansion, respectively.

The thermal boundary conditions are considered to be isothermal at the clamped
end (with T,,(0,t) = T,) and adiabatic at the free end of the microbeam. Thus,

? 6,(L,5)=0. (6)
0x
Watanabe et al. [26] verlfled these boundary conditions by means of FEA simulations
as well as in comparison to experimental data.

The restoring force R, (W,) in (3) is that of a standard Euler—Bernoulli beam with
immovable boundary conditions in case of a composite structure as well as a
coordinate system located outside the center of gravity of the overall beam area 4,

6,0, =0

T T Enl
R, (W,) = (A, I (7)
n(Wn) ( n iyn — n) n.un ax,‘{ Wh,
where u, is the beam’s density per unit length. The Q,,(8,, W, ; ) terms in (3) represent
the system’s damping mechanisms and consist of a thermal and a viscous part
— Enl az d a (8)

Qn (0 W) = (A anSyn — A “Sy_a")/T u ﬁen I 0, 9E"
n 4n n n

)

All microbeams share the same base structure (see Figure 1 and 2b), which
couples the motions of the individual members. To predict these coupling mechanisms
in realistic mathematical expressions we put the emphasis of this paper on the study of
boundary conditions and coupling phenomena. Herein, the neighboring elements are
connected with discrete spring-damper elements, as depicted in Figure 3. The

Figure 3: Schematic of an array with three microbeams and free body diagram.

elements are attached at the distance [, measured from the clamped end. The coupling
at position x,, = [, is described by (c.f. Figure 3)
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Fean = (Fcn+ - Fcn—)é\(fn - lc) + (Fdn+ - Fdn—)a(fn - lc): (9)

where §( ) is a Dirac function, F_,z are the spring forces acting between the (n — 1)-th
and n-th and between the n-th and the (n + 1)-th beam:

Fene = (W = Wn_1)Cnoy Feny = (Wyyy — W) Cny (10)
The forces corresponding to the damping elements are:
a a -
Fan- = EL: (Wy, — Wn_1)dy_, Fany = EE: (W1 — Wn)dpy (11)

The stiffness and damping coefficient of the base are ¢,z and d,,+. Note that the inter-
atomic forces acting between each microbeam’s tip and the sample surface Frg, (W,) in
(3) are neglected in this case.

Considering the thermal term in (3), the heat flux of the n-th element can be
express by

kA, 0° g (12)
cypA, + ToE A2 A, 0x2 "’
where k., is the thermal conductivity and c,, the specific heat capacity. The coupling
and excitation term Q. (W, ¢ t) consists of the heat generation due to a mechanical
deformation and the internal heat generation by means of Joul heating within the
aluminum microactuator
~ N\ TOEnl(S_'ynmn/Tn - Sy_an) 63 ~
QCEn(Wn,fr t) = — a2 - Wn
CopAn + ToEnAaf A 0xj0t (13)

i, )
e — t).
ok + ToEAazadn (™

QHFn(én) =

The internal heat generation g, (t) in (13) is given by the heat dissipated within the
aluminum layer due to resistive heating with respect to the volume of the meander
shape aluminum layer, with

.DeOn(1 + Hne én)
A

In (14) peon is the resistivity, a,, the temperature coefficient and 4,5 the cross-sectional
area of the aluminum layer. The excitation signal I,,(f) consisting of the static direct
current iy, and the alternating current i,.,, can be described as

gn(f) =

In(f) = iDCTl + iACn sin an y (15)

where Q,,is the excitation frequency.
Introducing the following set of nondimensional variables

X w . (7]
—n,wn=—n,t=wst,9n— L (16)
Ly

xnz Hn _T_or

with the elastic frequency w? = (I,,4, — SZ,)Eny/ (LiinAy) , EQ. (3) is rewritten as
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0% d 0* 0%

mwn = —2D¢p aWn - a_xﬁwn + Xwn1 a_xrzl O

+ Xwnz(gln+1 - 2Wn + Wn—1)6(x - lc/Ln)

+ Xwn3 a (Wn+1 - 2Wn + Wn—l)g(x - lc/Ln)' (17)
d 0° 03

Een = Xon1 Wen — Xonz2l0n — Xon3 FI T + Xonalr.
n n

D, in (17) is the damping ratio of a microbeam. The dimensionless coefficients y,,,,; to
Xwn> Of the mechanical system and the coefficients yg,, t0 yg,4 Of the thermal system
can be found in Table 2 and Table 3 in Appendix A. The corresponding nondimensional
boundary conditions of (17) are:

0
wy,(0,t) =0, —w,(0,t) =0,

0x,
62
—Xwneé _ZWn(lr t) + Xwn70n(1,8) =0
i a o
Xwn6 Xwn7
- 1,t —0,(1,t) =0
L, 0x3 wa(1,0) + L, 0x, n(1,0)
0
0,0.0=0,  Z-6,1,0=0

2.3. Modal Dynamic Array

To analyze the dynamic response of the array, the solution of the governing
equations (17) can be approximated in terms of a linear combination of a finite number
of orthonormal spatial basis functions with time dependent amplitudes, which yields:

p
Wn(xn' t) = Z Dwnk (xn)qwnk ®),
=1 (19)

14
i ©) = ) bome (K)o (0
k=1

wherein ¢, and ¢, are the mechanical and thermal spatial shape functions and
qQuwnk @nd ggnx are the time varying amplitudes, corresponding to the k-th mode of
oscillation; p is the number of modes consider in the modal decomposition. The shape
functions, which satisfy the boundary conditions exactly [27] are determined by solving
the eigenvalue problem of a single beam with a springs attached at a distance [, from
the clamped end.
Introducing ansatz (19) into (17) and applying the general procedure for a modal

analysis by multiplying the resulting mechanical equations with ¢,,,, and the
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corresponding thermal equations with ¢g,,, as well as integrate with respect to x,,
yields:

]wnlqwn = _Z(Dcln ]wnl + XwnB(’ﬁsvn)c.Iwn - (]wnz + 2Xwn2$5vn)an
+ Xwnll\,;/wn3q9n + d’.wnd’arwl (XWTL3(.IWTL+1 + Xwnzqwn+1)
+ PynPwn-1 OfwnSqwn—l + XwnZQWn—l) (20)

]9n1qan = (X9n1]9n2 - XBnZI%IGnl)qen - X9n3]9n3 ‘.Iwn + X9n41721]9n4

with @, = ¢n(l./L,). Note that dot ( ) and prime ( )’ denote ordinary derivatives
with respect to the nondimensional time t and coordinate x,, along the beams length.
The matrices J,,,,; 10 J,yn3 @nd Jg,; 10 Jo,3 contain the inner product of the mechanical
and thermal eigenfunctions (see Appendix A, Table 4).

Introducing the following state vector

T (21)

X=[qu ~ @ ~ @Gv G - Gm - Q]

and assuming that g, = 0, qu» = 0; g0 = 0 and g,,;, = 0, (20) can be written in state
space to:

0, I
K, Dy

with 0,, and I,, being a zero matrix and an identity matrix, respectively.The stiffness and
damping matrix K, and D, can be found in the Appendix A, Table 5.

Note that in case of (22) the bidirectional coupling of the thermal and mechanical
system of a single element is neglected. Thus, the systems excitation is:

X= [ ] X+ Qex, (22)

Qcx = Xwslwn3lo (23)

where the vector q4 consists of the time dependent amplitudes of each beam qgy,-

3. ANALYSIS

The analysis carried out within the following sections is divided into two parts: The
analysis of the analytical model with the corresponding eigenvalue problem and a
modal analysis of a finite element (FE) model. Conclusively, both models are compared
in view of a qualitative agreement and to evaluate the limits of the analytical array
model.

3.1 Analysis of Eigenvalue Problem

The eigenvalue problem of the governing equation of motion (20) is analyzed in
view of eigenfrequencies and coupled modes of the 4 element array and the
dependency of these properties on the geometry of the common base. In case of the
analytical model, the nondimensional coefficients y,,,,, and x..s, are the equivalent
coefficients to the base geometry and correspond to a stiffness and damping coefficient
of the coupling element. Additionally, the position of the coupling elements [. along the
beam’s x,, axis can be varied. The coupled modes of the array are denoted in the
following manner (Fig. 4):
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Figure 4: Coupled assembly modes 1 to 4 of the 4 element microbeam array.

For instance, the third mode follows a pattern, in which the elementsn =1andn =2
are in phase whereas beams n = 3 and n = 4 oppose them. Note that the position of
the mode markers does not correspond to the amplitude of the mode.

In a trivial configuration, wherein either the distance [, or the spring and damper
constant of the coupling elements are identical zero, only the four intrinsic modes of the
individual beams can be observed, with no coupling. On the other hand, large values
for the nondimensional stiffness coefficient c,, will also lead to an uncoupled behavior.
In case of a varying c, in the range of [1072,10%°] and a variation of k = [./L,, within
[0.1,0.8], the ratio of the n-th beam’s eigenfrequency to the eiegnfrequency of a single
microbeam with clamped free boundary conditions can be seen in Fig. 5.

Array mode 1
5 : | ‘ ‘
===c =0.01

B c"=10000000000 ----------------------------------------------
5 Bhasssseserannnsnnnesenets 7
\ex T —
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1 . ‘ | | |
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Array mode 2
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AE et e e |
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%1 0.2 0.3 0.4 05 0.6 0.7 08

Figure 5: Variation of the eigenfrequency ratio for the 1% and 2" array mode with respect to the
stiffness coefficient ¢,, and the dimension less distance between spring and clamped end of the beam «.

Both graphs in Fig. 5 show the change of frequencies of the 15! and 2" intrinsic
mode over k. The frequency ratios at x = 0.1 are wy;/wr =1 and wy,/w = 2.5,
respectively. Both of these ratios are also illustrated in Fig. 5. In case of an increasing
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stiffness ¢, the first and second intrinsic modes occur at the same frequency. This is
due to the location of the coupling element, which is located near the node of the
second eigenfrequency. In case of small k, an increasing stiffness c, leads to an
increasing difference between the 15! and 2™ intrinsic mode of each microbeam.

The first assembly mode for [, = 0.2 and ¢,, = 10° is depicted in Fig. 6. As can be
seen, two pairs of members are forming between the 1% and 4" element as well as
between the 2" and 3™ element. These different amplitudes of oscillation result from
the different boundary condition in the y,, coordinate. The outer beams are connected
to only one neighboring element and to a fixed support, whereas the beams in the
middle of the array connected with 2 neighboring elements.

0.2
0.1

0

¢nk

-0.1

0.5 3

x10°
0 1 1
X, Element n
0
-1 \

0.5 3
2

¢nk
N

0.2

¢nk
x

n Element n

0.5 3

X, Element n

Figure 6: Left: 4™ and 2™ coupled mode of the array; ¢, = 105, I, = 0.2 . Right: Decoupled mode for
k—->0orc, > 0o0rc, > .

3.2 Modal Analysis Finite Element Model

The modal analysis of a finite element (FE) array model is done using ANSYS
Workbench v14. The geometry of each single microbeam is similar to the parameters
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used in the analysis of the eigenvalue problem of the analytical model in the foregone
section. The FE model also includes the base all microbeams share, with the
dimensions [, h,, and B,z (see Section 2.1), which, in turn, yield the stiffness of the
base. The mesh is generated using hexahedral elements with size functions depending
on the thickness of each layer, so that at least one elements fits the thickness if the
aluminum and silicon dioxide layer. The array is built from cells of a single microbeam
with its base (see Fig. 7).

Figure 7: Ansys mesh and single cell for FE simulations.

Similar to the results gained from the analysis of the analytical model in Section 2.3, the
FE model yields an uncoupled behavior of members in the case of a high rigidity of the
common base, see Fig. 8.

Figure 8: Uncoupled mode of the second microbeam (left; . = 20 um, h, = 5 um, B, = 80 um) and
coupled behavior in the 4" array mode (right; [, = 160um, hy, =5 um, B,z = 400 um)) for different
geometrical parameters of the base.

Depending on the geometry of the array’s base, there might be a superposition of
bending and torsional modes or occurrence of plate modes. As can be seen in Fig. 9,
the eigenmodes change from individual, pure bending and torsional modes to the
modes of a plate with increasing the length of the base. In this case of weak coupling,
the system’s behavior can no longer be described accurately by means of an Euler-
Bernoulli beam model. Due to the superposition of torsional and bending modes a plate
model is needed in order to describe the systems motion.

1076



Figure 9: Superposition of a bending an torsional mode at the second intrinsic bending (left, [, = 40 um,
h, =5 um, B.,s = 80 um) and a plate mode in case a large thin base (right; [, = 160 um, h;, =5 um,
B = 80 um)

The findings of the analytical model are qualitatively validated by the FE analysis.
While the coupling mechanism can be successively modeled by discrete spring and
damping elements, the analytical model of an individual member should be modeled as
a plate structure when coupling is expected. A performance of a micro cantilever array
which is dominated by coupled torsional and bending motion cannot be successfully
predicted using the simplified Euler-Bernoulli beam theory.

4. CONCLUSIONS

In summary, a first dynamical model is presented, which captures the behavior of
an array of thermally actuated microbeams. The model incorporates the composite
structure of a single beam and takes account for the physical effect of thermal actuation.
It also captures the thermoelastic interactions, which result in a damping of the system,
which especially in case of small beams becomes of importance. The equations of
motion are coupled by means of discrete spring and damping elements, representing
the common base of an array.

A modal analysis of the analytical model and a FE model was carried out with
respect the geometrical parameters of the base or clamped boundary of the beam. The
coupling via discrete coupling elements yields a sufficient approximation of the systems
behavior in case of a high stiffness coefficient of the base. In case of a lower stiffness
ratio between the microbeam and the base, only the first bending modes of the array
can be approximated.

Our future work will be related to different sets of boundary conditions and varying
beam models in order to gain a good approximation of the vibration of an array. The
boundary conditions are going to be validated experimentally. To evaluate the coupled
behavior in case of a low stiffness and low aspect ratio base, a thermoelastic plate
model is going to be derived to capture the coupled bending and torsional modes of the
single elements of an array.
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APPENDIX A

Table 1: Weighted material parameters and moments of area

E _ _ _
n, Ll Ay = Z NpiAn; Syn = z nniSyni Aa, = Z Ny Ui A
Ena i i i
?n = Z keniAni | copAn = Z ConiPniAni Syni = dAy Lyn; = j Zpd Ay
i i (An) (4n)
Table 2: Coefficients of the mechanical system
- & T o = El TO Enllyncn
X =(Aa,S,, —A,S,a,)—= X —__ntyn n
o = (S = AuSy0) g T Ly
Xwns = 2Dy P L
wn 6(‘)5?an/"71€§11
A2Rtn 2 G Eann
= = (A, L, — S%,) —
Xwns 180(‘)5211Hnﬂnggn Xwne ( n fyn yn) AnL%
- - — JE, T, dp
Xwn? = (A apSyn — A .Syva,) —— D, =——
wn ( noyn ny n) A, cl 2 1,
Table 3: Coefficients of the thermal system
kt_An X _ AnQepeo Zi Ay
= — — [ = — —
A6 (c,,pAn + TOEnlAa’,Zl An)LZ Wgn "2 (Cvan + TOEnlAarzl An)wsnAgn
En1(SynAa, A7t — S, a PeoAn 2i A
Xon3 = nl( A 4 n) Xona = e

(cypAn + TOEnlA_arzl An)L%wsn

TowsnAZ3(c,pAn + ToEp Aal Ay)
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Table 4: Matrices of the inner product of the mechanical and thermal eigenfunctions

[ 1 ]wnZ
f¢3vn1dx O IIIIT IIIIT
0 j¢wn1¢6n1 Jd)wnl(panp
]wnl =
1
0 j¢‘%}npdx IIIIT IIIIT
0 - fqbwnquenl f‘pwnp(»benp
]wn3 [
f ¢5n1dx 0
Jd)wnl(panl f¢wn1¢9np 0
]9n1 =
— 1
1 2
nT nT 0 jd)gnpdx
fqbwnquenl f‘pwnp(»benp - 0 -
]9n2 ]9n3
IIT IIT n
f Dom D dx 0 f Boms Diomdx f Doms Blimpd
IIT
0 J‘pwnp(penp Jd’anpd)wnl jd)enp(pwnp




Table 5: Nondimensional stiffness and damping matrices and coefficients

(€21 €3 0,
Ci; €y Csy :
K, = Cin Cypn C3py
: Clh—l CZh—l C3h—1
0, - C,i  Cap |
[D,; Dsy

0, ]

Dh = Dln D2n D3n
Dlh—l DZh—l D3h—1
| 0, D,, D5, |
Cin = Jui®un®lm-1dwz | Con = —JuAUwz Can = Jui @unPins1Xwz
+ 2 sz¢5m)i
Dy, = ]\;/%¢wn¢an—1)(w3 D3, L2 D;, = ]\;/11¢wn¢an+1)(w3
= _Z(D I, + Xw3]\;1¢wn);
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Table 6 Parameters

Parameter Unit Symbol Value
Hieght Layer 1 um h; 3
Layer 2 0.6
Layer 3 1
Length Section 1 pm I 203
Section 2 77
Section 3 40
Width um B 111
Tip Radii nm Ry 20
Tip hieght um ht 10
Tip to beam end distance um I 10
Length piezoresistive element um Ipe 28
Width piezoresistive element pm bpe 6
Position piesoresistive sensor (midelle) um Ips 10
Heater length mm I 1.18
Heater width Section 1 pm by; 3
Section 2 4.5
Distance between each cantilever um denm 60
Length of base (clamp) um I
Hight of base (clamp) um hg
Young's modulus Layer 1 GNm? E; 170
Layer 2 74
Layer 3 70
Density Layer 1 kgm™ oi 2300
Layer 2 2210
Layer 3 2694
Possion's ratio Layer 1 1 Vi 0.22
Layer 2 0.17
Layer 3 0.35
Coefficient of linear thermal expansion Layer 1 10° K’ o 2.616
Layer 2 0.54
Layer 3 23.3
Thermal conductivity Layer 1 W (m K) ki 156
Layer 2 1.4
Layer 3 237
Specific heat capacity Layer 1 J (kg K)' cy 713
Layer 2 705
Layer 3 753
Quality Factor 1 Q 516.13
Resistivity (layer 3 aluminum) 10°%Q m Pe 2.857
Heater resistance Q Ry 24
Sensor resistance Q R 1090
Hamaker constant repulsive 1070 m® H, 1.3596
attractive 1079 H, 1.865
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