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ABSTRACT 

 
This paper deals with the analysis of dynamic characteristic of mooring system of 

floating-type offshore wind turbine. A spar-type floating structure which consists of a 
nacelle, a tower and the platform excepting blades, is used to model the floating wind 
turbine and connect three catenary cables to substructure. The motion of floating 
structure is simulated when the mooring system is attached using irregular wave 
which is Pierson-Moskowitz. The mooring system is analyzed by changing cable 
length, cable position of floating structure and the position of center of mass. The 
dynamic behavior characteristics of mooring system are known comparing with cable 
tension and 6-dof motion of floating structure. These characteristics are much useful 
to initial design of floating-type structure. From the simulation results, the optimized 
design parameters that are cable length and cable position of connect point of 
mooring cable can be obtained. 
 
1. INTRODUCTION 

 
The necessity of developing new renewable energies is coming to the front and 

investments in development of new renewable energies is on a increasing trend 
world-widely because of international environmental problems and a sudden rise of 
an oil price. Above all kinds of new renewable energies businesses, the wind power 
market is being expanded, so investments and interest in a wind power industry from 
a lot of nations are expected. 

The United Kingdom promotes offshore wind turbine as a core industry to attain 
the goal that the UK is going to supply 15% of all power by new renewable energies 
by 2020. German government is going to build forty offshore wind turbine farms 
including thirty wind farms in the North Sea and ten wind farms in the Baltic Sea, and 
to build from five thousand to six thousand 5MW-power plants per year for an 
expansion of the power capacity as 25,000~30,000MW by 2030. An expansion of 
new renewable energies is expected to reduce carbon emissions and to contribute to 
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climate protection. In further sea from land winds are superior in quality and noise 
problems could be solved, so many fixed-type offshore wind turbine in shallow water 
are being built now. After this, floating-type wind turbine will be built in the far ocean 
finding wind much more superior in quality.  

The floating-type wind turbine needs a mooring system because it floats on the 
sea water. Mooring system for a floating-type wind turbine is maintaining its position 
not to go drifting on the sea and minimizes the movement of wind turbines. In this 
study, a floating-type wind turbine was modeled and parametric study was performed 
to evaluate the characteristics of mooring system. 
 
2. WAVE MODELING 

 
A wave spectrum is the distribution of wave energy as a function of frequency. It 

describes the total energy transmitted by a wave-field at a given time. The Pierson-
Moskowitz spectrum is an empirical relationship that defines the distribution of 
energy with frequency within the ocean. The Pierson-Moskowitz spectrum is one of 
the simplest descriptions for the energy distribution. It assumes that if the wind blows 
steadily for a long time over a large area, then the waves will eventually reach a point 
of equilibrium with the wind. This is known as a fully developed sea. Pierson-
Moskowitz wave spectrum equation used in ANSYS AQWA as follow.  
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Where ω is the wave frequency(rad/sec), Hs is significant wave height and Tz is zero 
crossing period. The Pierson-Moskowitz spectrum is shown in Fig. 1. 
 

 
Fig. 1 Pierson-Moskowitz spectrum 

 
Given the wave spectrum, the time histories of irregular wave are generated by linear 
superposition of frequency which has wave height and phase angle from the 
spectrum. 
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Where 
n
k  is wave number, 

n
A  is wave amplitude and 

n
φ  is phase angle. The 

relationship between the spectrum )( jS ω  and the wave amplitude 
jA  for a wave 

component j is :  
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The maximum frequency(
max

ω ) and the minimum frequency(
min

ω ) are determined in 

Pierson-Moskowitz spectrum. And frequency is divided by the number of N. 
 
3. ANALYSIS MODEL 

 
Floating offshore wind turbine is chosen as the spar type. The specifications are 

shown in Table 1.  
          

Table 1. Spar type wind turbine properties 

Blade mass 30,600 kg 

Nacelle height 3.2 m 

Tower mass 146,000 kg 

Tower height 65 m 

Tower top diameter 3.5 m 

Tower bottom diameter 4.5 m 

Tower mass 170,000 kg 

Platform height 65 m 

Platform top diameter 8 m 

Platform bottom diameter 8 m 

Platform mass 2,684,000 kg 

Center of buoyancy 

(from water line) 

 

32.5 m 

Center of mass 

(from water line) 

 

42.5 m 

 

The three mooring lines are placed at intervals of 120 degrees for the mooring 
system, and mooring lines are modeled as shown in Table 2. 
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       (a) cable 1         (b) cable 2       (c) cable 3 

Fig. 10 Mooring cable tension analysis according to connection point 
 
Decreasing the mooring cable tension is known from the Fig. 9 as the connection 
point is below the platform. 
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