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ABSTRACT 
 

     In this work a crack identification method for bridge type structures under moving 
vehicle is proposed. The basic of the method is to formulate damage detection as an 
inverse problem, and solve for damage locations and extents. To this end, an objective 
function is defined based on the difference of damaged beam dynamic response and 
the response calculated by the mathematical model of the beam. The optimization 
problem is solved through a popular evolutionary algorithm, i.e. the particle swarm 
optimization (PSO) with linearly increasing inertia weight, to obtain crack locations and 
depths. From the numerical simulations it was observed that cracks with depth ratio of 
0.1 can be identified with the present method in spite of three percent noise 
interference and distortive effect of road surface roughness.  
 
Key Words: Cracked beam, damage detection, particle swarm optimization, moving 
vehicle 

 
1. INTRODUCTION 
 
     Structures subject to vehicular loads have many practical applications such as 
railway tracks, bridges, roadways, etc. Since moving load yields larger deflections and 
higher stresses than equivalent static load conditions, dynamics of such structures has 
received considerable attention in the literature (Frýba 1999). If the carrying structure 
has crack-like local defects, then the impact of moving load becomes more 
pronounced. In the earlier study on this issue Mahmoud (2001) demonstrated that 
crack shifts the minimum point of displacement to the right-hand on the time axis. 
Bilello and Bergman (2004) concluded that changes in the time-response of the beam 
due to damage are more perceptible in comparison to the changes in the natural 
frequencies. Law and Zhu (2004) investigated the effects of open and breathing cracks 
on the response of concrete bridges carrying moving vehicle. Ariaei et al. (2009) 
performed a similar study for beams with breathing cracks subject to moving mass. On 
the other hand, various damage detection methods have been developed for beams 
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subject to moving load/vehicle using the continuous wavelet transform (CWT) (Zhu 
and Law 2006; Nguyen and Tran 2010; Hester and Gonzalez 2011; Gökdağ 2011; 
Khorram et al. 2012). They are based on the fact that CWT coefficients of beam 
dynamic response demonstrate local peaks at crack locations, and magnitudes of 
these peaks are proportional to crack depths.  
     In structural damage detection there are other methods based on model updating. 
The basic of these is to update mathematical or finite element model of the structure to 
match the calculated response to the one measured from damaged structure. This is 
achieved through an optimization procedure. To solve the optimization problem 
evolutionary methods are generally preferred, as they do not require gradient 
calculation, and have less possibility of being trapped by local minima in comparison 
with the gradient based methods (Begambre and Laier 2009; Buezas et al 2010; 
Moradi et al 2011; Seyedpoor 2012). One of these algorithms is the particle swarm 
optimization (PSO). PSO, developed by Kennedy and Eberhart (1995), is a stochastic 
optimization technique inspired by natural flocking and swarm behavior of birds and 
insects. It is known to have less parameters and rapid convergence compared with the 
genetic algorithms (GA) (Parsopoulos and Vrahatis 2010), and has been successfully 
employed in model updating based damage detection applications (Begambre and 
Laier 2009; Moradi et al 2011; Seyedpoor 2012). In model updating based damage 
detection, time dependent structural response is used, as well. Buezas et al. (2010) 
formulated an optimization problem using time responses from several points on the 
beam, and determined crack size and depth by solving this problem.  
     In the present work, motivated by the conclusion of Bilello and Bergman (2004) 
mentioned above and the method of Buezas et al. (2010), a model update based 
damage detection approach has been proposed for bridge type structures carrying 
moving vehicle. In this respect, time dependent deflections from several points on a 
cracked beam were obtained, and an objective function was defined by subtracting 
these from the ones calculated by the mathematical model of the structure. Then, the 
PSO is employed to minimize this objective function to determine crack locations and 
depths. To the best of the author’s knowledge, this is the first study dealing with the 
formulation of damage detection in a beam subject to moving vehicle as an inverse 
problem and solving by the PSO with increasing inertia weight for crack identification. 
 
2. MATERIAL AND METHOD 
2.1. Dynamic response of the beam 
 
     Fig.1 illustrates the beam-vehicle system. The Euler-Bernoulli model is considered 
for the beam, and half car model is adopted for the vehicle moving with the speed V. 
An open crack with depth 1h is located at 1z on the beam. Surface unevenness of the 
beam is regarded and tyres are assumed to be always in contact with the beam. 
Under these assumptions the equations of motion for the vehicle and beam can be 
derived as follows: 
  



 
Fig. 1. Beam-vehicle system. 
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where v v 1 2 1 2 1 2 3 1 2 3 4, , , , , , , , , , , ,I m m m L L k k k c c c c are vehicle parameters shown in Fig.1, C is 
the damping of beam material. id , i=1:4, denote vehicle degrees of freedom, Iδ  and 

IIδ  are the Dirac delta functions defined as ( )II z Vtδ δ= − , 1 2( ( ))I z Vt L Lδ δ= − − + . IP  
and IIP are the interaction forces acting on the beam through the contact points I and II, 
as follows: 
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where u is the vertical displacement at the tyre contact point, i.e. ( , )u y z t= , its 
derivative with respect to time is d( ( , ) d ( , ) ( , )u y z t t V y z t z y z t t= = ∂ ∂ + ∂ ∂& , and ' /d dz= . 
Road surface roughness function in Eq. (3) is (Wu and Law 2011) 
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where 0( )dS f is the roughness coefficient in m3/cycles, 0f  is the discontinuity frequency 
equal to 1/ 2π (cycle/m), cL is twice the length of the beam, and kθ is the uniform 
random number between 0 and 2π. N=104 is adopted in this study. The road 
classification according to the ISO standard is based on the value of roughness 
coefficient. Five classes representing different qualities of the road are A: very good, B: 
good, C: average, D:poor, E: very poor with the roughness coefficients equal to 1x10-6, 
6x10-6, 16x10-6, 64x10-6, 256x10-6, respectively. 

     Assuming mode superposition, i.e. T( ) ( )z tY q , substituting into Eq.(2), multiplying 
by ( )zY  and integrating from 0 to L, and finally combining with Eq.(1) lead to the 
following coupled beam-vehicle equations: 
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damping and stiffness matrices in Eq.(1), mN  is the number of modes used, ( )zY  is 
the vector of size mN x1 containing vibration modes of the cracked beam, and ( )tq  
stands for the modal coordinates. Additionally, 
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Eq.(5) can be solved by any numerical integration method. In this study Newmark-β 
method (with β=1/6 and γ=1/2 (Clough and Penzien 1995)) is employed for this 
purpose. Before solving the equation, vibration modes of the cracked beam is required 
to obtain the coefficient matrices in Eq. (5). Assuming the beam is composed of two 
parts joined at the crack location through a rotational spring, we can write the following 
compatibility equations at the crack location (Mahmoud 2001): 
 

1 1 2 1( ) ( )Y z Y z= , 1 1 1 1 2 1' ( ) '' ( ) ' ( )Y z Y z Y zθ+ = , 1 1 2 1'' ( ) '' ( )Y z Y z= , 1 1 2 1''' ( ) ''' ( )Y z Y z=  (7) 

 
Here ( )iY z is the mode shape of the ith beam part defined as follows 
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where λ=(ρAω2/(EI))0.25. λ and ω are eigenvalue and natural frequency parameters, 
respectively, and ijC are the constants to be determined by solving the eigenvalue 
problem. The geometric factor of the crack, θ , is defined as follows (Mahmoud 2001; 
Ariaei et al 2009) 
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The eigenvalue problem is formulated using Eq.(7) along with the boundary conditions 
for the simple supports. Note that in the case of multiple cracks the number of Eq. (8) 
is equal to the number of cracks. Natural frequencies and vibration modes of the 
cracked beam can be obtained by solving the eigenvalue problem (see Mahmoud 
2001, Ariaei et al 2009, Zhu and Law 2006, Gökdağ 2011 for details). Using these 
vibration modes Eq.(5) is solved. Fig.2 illustrates the normalized midspan deflection of 
the beam. The following numerical data for the beam-vehicle system are employed to 
obtain the figure (Nguyen and Tran 2010): 210 GPaE = , -37855 kgmρ = , L=50m, b=1m, 
h=2m, v 12404m = kg, 1 2 725.4m m= = kg, v 172160I = kgm2, 1 1969034k = Nm-1, 2 727812k =
Nm-1, 3 4735000k = Nm-1, 4 1972900k = Nm-1, 1 7181.8c = Nsm-1, 2 2189.6c = Nsm-1, 



3 4 0c c= = , 1 2 3L L= = m. Normalization is made by dividing to the midspan deflection of 
the simply-supported beam loaded by concentrated static force P acting on the 
midspan, i.e. PL3/(48EI) where P=9.81( v 1 2m m m+ + ). The first six vibration modes of the 
beam, for which the natural frequencies are 1.88, 7.50, 16.88, 30.01, 46.89, 67.52 Hz, 
are employed. Two percent modal damping is considered for each mode (Zhu and 
Law 2006). The moving load speed is V=10m/s. The sampling frequency of the 
simulation is 500 Hz which can capture the response of the first six vibration modes of 
the beam. The roughness coefficient is 6

0( ) 16x10dS f −= and damage locations are 

1 1 0.33z z L= = , 2 2 0.67z z L= =  with equal crack depth 1 1 0.2h h h= = , 2 2 0.2h h h= = . 
From Fig.2 it is seen that damage and roughness have significant impact on the 
maximum amplitude and variation of deflection with time.  

 

 
Fig. 2. Normalized midspan deflections of the beam. I: damage (−), roughness (−),  

II: damage (+), roughness (−). III: damage (−), roughness (+), IV: damage (+), 
roughness (+).  (−): not present, (+): present 

 
 
2.2. The objective function and the constrains 
    The aim is to correlate the response of the damaged beam to the one calculated by 
the mathematical model of the structure, so that crack locations and depths can be 
determined. To achieve this, it is proposed to adjust crack sizes and locations by 
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solving an optimization problem. The objective function of the problem is introduced as 
follows: 
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where mpN  is the number of measurement points on the beam, nz  is the location of the 
nth measurement point on the beam, y  denotes the reference displacements 
measured from damaged beam, y  stands for the corresponding displacements 
computed by the mathematical model of the structure. T is the total time for the vehicle 
to move across the beam. x  is the vector containing crack location and size 
parameters, i.e. 
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where cN  denotes the number of cracks. As to the measurement points, it is better to 
chose them close to the midpoint, since maximum deflection occurs at the beam 
midspan. Thus, four points (Buezas et al 2010) on the beam were determined as {0.3 
0.5 0.6 0.7}L, i.e. mp 4N =  in Eq. (10). If the number of cracks ( cN ) is more than one, 
then extra constraints other than lower and upper boundaries should be introduced for 
the optimization algorithm to make search in the feasible region. With these 
explanations in mind, the optimization problem can be formulated as follows 
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Crack locations and depths can be determined by solving Eq.(12). In this work the 
PSO with increasing inertia weight is employed for this purpose, and its details are 
given in the next section. 
 
2.3. The particle swarm optimization algorithm 
     PSO algorithm is initialized with a "swarm" composed of N particles. Particles refer 
to the candidate points in the search space of the optimization problem. To obtain the 
best solution each particle adjusts its trajectory toward its own previous best position 
and toward the previous best position of the swarm. By this way, each particle moves 



in the search space with an adaptive velocity, and stores the best position of the 
search space. Location (x) and velocity (v) of a particle are updated with the following 
equations (Kennedy and Eberhart 1995; Parsopoulos and Vrahatis 2010) 
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where k is the iteration counter, Kmax denotes the maximum number of iterations, m is 
dimension of the problem, k

ijp   and k
gjp  are, respectively, the best positions of the ith 

particle and the swarm found until the kth iteration, R1 and R2 ∈ U(0,1), where U means 
the uniform random distribution, 1c  and 2c  are positive weighting constants called 
cognitive and social coefficients, respectively. These two constants regulate the 
relative velocity toward global and local best points. The algorithm using Eq.(13) is 
called standard PSO. On the other hand, Zheng et al. (2003) proposed an approach in 
which k

ijv  in Eq.(13) is multiplied with an inertia weight increasing from a lower value to 
an upper one iteratively. In their opinion, either global or local search ability associates 
with a small inertia weight, which possesses the capacity of exploring new space. 
Besides, a large inertia weight provides the algorithm more chances to be stabilized. 
According to this approach, velocity of each particle is updated as follows. 
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where 1 2 1.5b b= = , 1 2 0.5d d= = , and kw is the inertia weight linearly increasing from 
0.4 to 0.9, i.e. 

   max

0.4 (0.9 0.4)k kw
K

= + −       (15) 

In this study, this version of the PSO will be used since its stability and convergence 
speed are better than those of the classic PSO. The algorithm was executed in 
MATLAB environment. Initial values of particles and their velocities were obtained 
drawing random numbers within the range of each dimension (Trelea 2003), i.e. 
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where LB, jx  and UB, jx are, respectively, the lower and upper boundary values of the jth 
dimension, and R ∈ U(0,1). Besides, if a particle moves beyond ranges, then it is 
bounced back to the search space in the following way: 
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3. NUMERICAL SIMULATION 
 
3.1. Case studies 
     Using the same beam and vehicle parameters, the damage scenarios in Table 1 
are considered. Road surface roughness is excluded for now, since its effect will be 
dealt with in the next section. To simulate the real situation, certain amount of noise is 
added to the reference data as follows (Zhu and Law 2006) 
 

    noisy calc p( , ) ( , ) . .y z t y z t N Gσ= +     (17) 

 
where calc( , )y z t  is the calculated response of point z of the damaged beam (see 
Eq.(10)), pN  is the noise percentage, G is Gaussian distribution with zero mean and 
unit standard deviation, σ  is the standard deviation of calc( , )y z t . Clearly, the first 
damage case in Table 1 is simpler than the second, since the dimension of the 
problem and the amount of noise are lower whereas crack size is bigger in the first 
case. Besides, the moving vehicle's speed is lower in the first case. This is significant, 
as the wavelet transform methods lose sensitivity to damage at higher moving 
load/vehicle speeds (Zhu and Law 2006; Nguyen and Tran 2010; Hester and 
Gonzalez 2011; Gökdağ 2011; Khorram et al. 2012). Thus, damage identification 
ability at higher speeds can be deemed as an advantage of the method.  
 
Table 1. Damage scenarios. 

Case Crack Parameters PV  (m/s) pN  (%) 

1 1 10.5,  =0.3z h=  5 1 
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1 1

2 2

3 3
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On the other hand, swarm size (N) and the number of maximum iterations were 
determined by experience as N=20 and max 30K =  for Case 1. These are selected as 
N=30 and max 60K =  for Case 2, considering the dimension of the problem. Algorithm 



was run ten times due to its stochasticity (Moradi et al 2011) for each case, and the 
results of the best runs are given in Table 2. Additionally, iterative variation of the 
objective function is given in Fig. 3 for the best runs. From Table 2 it is clear that the 
proposed method can successfully locate damage locations and estimate crack sizes 
for Case 1. Crack locations and depths are determined with the relative errors smaller 
than 1%. On the other hand, although the errors in the results are higher for Case 2, it 
is seen most of the parameters are determined with the error smaller than 10%. 
Especially, it is promising the errors in the damage locations are lower.  
 
Table 2. Simulation results of the cases in Table 1.  

Case  1z  2z  3z  1h  2h  3h  f * 

1 

Exact 0.5000 --- --- 0.3000 --- --- 0.1174

Predicted 0.4994 --- --- 0.3004 --- --- 0.1241

ε 0.12 --- --- 0.12   5.7 

2 

Exact 0.3000 0.5000 0.7000 0.1000 0.1000 0.1000 0.0906

Predicted 0.3293 0.4948 0.6723 0.1090 0.0750 0.1099 0.0911

ε 9.75 1.04 3.95 9.01 25.00 9.85 0.55 

*: See Eq. (10),  ε:=100x E-Pr E , E: Exact, Pr: Predicted 

 

 
Fig. 3. Variation of objective function with iteration.  

 
3.2. Effect of road surface roughness 
     As indicated previously road surface roughness has great impact on the dynamic 
response of the system (see Fig.2). Since roughness function is random, each 
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measurement produces different deflection profile (Wu and Law 2011), i.e. y  in 
Eq.(10). Let's indicate this considering Case 2 in Table 1. Fig. 4 illustrates ten 
deflection time histories of the midspan with 6

0( ) 6x10dS f −= . It is seen that each curve 
is different from the others due to the stochasticity of the roughness function. Thus, the 
proposed method cannot be implemented with single deflection profile recorded from 
measurement point. Fortunately, the roughness function in Eq.(4) has Gaussian 
distribution, i.e. a stochastic process composed of many roughness functions has the 
probability density function which is well correlated with that of the Gaussian process 
(Wu and Law 2011) . Thus, if deflection time history of a point on the damaged beam 
is measured many times and averaged, then the mean value of the deflections 
becomes closer to the one obtained by ignoring the roughness and noise, i.e. the 
function y  in Eq.(10). This is illustrated in Fig. 5 for the same case. The right-side 
figure indicates that the more the number of averages, the better the correlation 
between the computed and average deflections, i.e. y  and y . In the left-side figure 
the average value of 30 measured deflection profiles (curve II) and the reference one 
computed by the mathematical model (curve I) are compared. It is obvious that not 
only the average curve is well correlated with the reference one but also noise is 
eliminated to a great extent by averaging. Now, employing the average of 50 deflection 
profiles from each measurement point, the optimization problem is solved again, and 
the results in Table 3 are obtained. At the table the mean value of the ten values are 
given for each variable and the objective function, since each run of the optimization 
algorithm yielded erroneous results. From the table, it is seen that crack locations and 
depths are determined with error smaller than 10%. Thus, we can say that employing 
the average values of measured deflections enhances the accuracy of the proposed 
method. 
 
Table 3. Simulation results of Case 2 in Table 1 including road surface roughness.  

 1z  2z  3z  1h  2h  3h  f * 

Exact 0.3000 0.5000 0.7000 0.1000 0.1000 0.1000 0.0273 

Predicted 0.2748 0.5395 0.7652 0.1099 0.1097 0.0907 0.0254 

ε 8.4 7.9 9.3 9.8 9.7 9.3 6.9 

*: Eq. (10),  ε:=100x E-Pr E , E: Exact, Pr: Predicted. 

 



 
Fig. 4. Midspan deflections of the beam corresponding to ten  

different roughness profiles. 
 
 

 
Fig. 5. (a): Comparison of midspan deflections for Case 2 in Table 1 (I: no noise and 
roughness, II: Average of 30 deflection curves including noise and roughness). (b): 

Variation of objective function with the number of averages (only the midspan 
deflection is employed, i.e. mp 1N =  in Eq.(10)). 
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CONCLUSION 
 
     In this study, a new crack identification method for beam type structures carrying 
moving vehicle is proposed. Damage detection was formulated as an inverse problem 
using the difference of measured time dependent deflections of the damaged beam 
and those computed by the mathematical model of the structure. Then, this problem 
was solved through a robust evolutionary algorithm, i.e. the particle swarm 
optimization with increasing inertia weight, for crack locations and depth. Both road 
surface roughness and measurement noise are considered. It was demonstrated that 
crack size of 0.1 can be determined by the proposed approach with error lower than 
10%. The drawback of the method is that it is difficult, by a single measurement, to 
obtain the reference data well-correlated with the one computed by the mathematical 
model of the structure. This is because of the random nature of the road surface 
roughness, which gives rise to different deflection profiles at every measurement. 
However, average of multiple measurements is well-correlated with the one computed 
by the mathematical model. Thus, the proposed method can be implemented provided 
the average of multiple measurements is employed as reference. Future works are 
planned to consider the opening and closing of crack during the simulation, and test 
the method with real data.  
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